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GM-CSF as a therapeutic target in
autoimmune diseases

Aoi Shiomi*, Takashi Usui and Tsuneyo Mimori
Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been known as a hematopoietic growth factor
and immune modulator. Recent studies revealed that GM-CSF also had pro-inflammatory functions and contributed
to the pathogenicity of Th17 cells in the development of Th17-mediated autoimmune diseases. GM-CSF inhibition
in some animal models of autoimmune diseases showed significant beneficial effects. Therefore, several agents
targeting GM-CSF are being developed and are expected to be a useful strategy for the treatment of autoimmune
diseases. Particularly, in clinical trials for rheumatoid arthritis (RA) patients, GM-CSF inhibition showed rapid and
significant efficacy with no serious side effects. This article summarizes recent findings of GM-CSF and information
of clinical trials targeting GM-CSF in autoimmune diseases.
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Background
Granulocyte-macrophage colony-stimulating factor (GM-
CSF) was originally defined by its ability in vivo to generate
colonies of both granulocytes and macrophages from bone
marrow precursors [1]. It has also been shown to act on
mature myeloid cells as pro-survival, activation, and differ-
entiation factors [2]. Recent studies suggest that GM-CSF
also has many pro-inflammatory functions and plays
critical roles in the development of autoimmune and
inflammatory diseases [3, 4].
Function of GM-CSF
Myeloid cell
GM-CSF promotes the survival and activation of macro-
phages, neutrophils, and eosinophils, as well as dendritic
cell (DC) maturation [2]. On the other hand, GM-CSF-
deficient mice have relatively normal myelopoiesis with
abnormal lung histology that is indistinguishable from hu-
man pulmonary alveolar proteinosis (PAP) [5], indicating
a redundant role of GM-CSF in myeloid cell development
and its differentiation and critical roles in the maturation
and surfactant catabolism of alveolar macrophages [6]. In
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addition to these functions, GM-CSF is reported to have
diverse functions on mature myeloid cells, including
enhancement of pro-inflammatory cytokine production
[7], antigen presentation [8], induction of phagocytosis
[9–11], and promotion of leukocyte chemotaxis and adhe-
sion [12, 13].
GM-CSF can polarize macrophages into M1-like

inflammatory macrophages, which produce a variety of
inflammatory cytokines such as TNF, IL-6, IL-12p70,
IL-23, or IL-1β, and thus promote Th1-Th17 responses
[7, 14, 15]. On the other hand, the association of
GM-CSF and Th2 immunity is also reported in allergic
airway inflammation [16, 17].
GM-CSF positively regulates the development of

dermal migratory CD103+CD11b− and gut migratory
CD103+CD11b+ DCs [18, 19] but negatively regulates
the development of plasmacytoid DCs (pDCs) [20] and
resident CD8+ DCs [19]. GM-CSF is also reported to
induce the development of inflammatory monocyte-
derived DCs (moDCs) in vitro [21], but its effect in vivo
has not been established well. It was reported that
GM-CSF transgenic mice have increased the number of
moDCs [22] and GM-CSF-deficient mice with inflamma-
tory arthritis have markedly reduced the number of
moDCs [23]. On the other hand, in the other reports,
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GM-CSF was shown to be dispensable for the differenti-
ation of moDCs, at least during acute infections [19, 24].
In neutrophils, GM-CSF upregulates the antimicrobial

functions such as phagocytosis, reactive oxygen species
(ROS) production, or expression of the integrin CD11b
which increases cellular adhesion and tissue entry [12, 25].
The effect of GM-CSF on osteoclast differentiation is

quite complex, for it has both enhancing and suppressive
actions. Under the steady state, osteoclasts are known to
differentiate from hematopoietic precursors of the
monocyte/macrophage lineage in the presence of M-CSF
and receptor activator of NFκB ligand (RANKL) [26].
GM-CSF induces shedding of M-CSF receptor, resulting
in disruption of osteoclast differentiation [27]. On the
other hand, the differentiation of osteoclast precursors
generated in the presence of GM-CSF or GM-CSF plus
TNFα was not inhibited by GM-CSF in vitro, indicating
that a different set of osteoclast precursors is available in
inflammatory arthritis and that they respond to a variety
of pro-inflammatory cytokines which compensate for the
loss of M-CSF signaling [28, 29]. GM-CSF is also re-
ported to induce fusion of prefusion osteoclasts to form
the bone-resorbing osteoclasts and induce bone erosion
[30]. Conversely, other report suggested that GM-CSF
inhibited the resorption ability of osteoclasts, indicating
the existence of another osteoclastic pathway [28].

B cell
Among B cells, innate response activator (IRA) B
cells, a B1a B cell-derived inflammatory subset, pro-
duce GM-CSF and also express GM-CSF receptors
[31, 32]. GM-CSF controls IgM production from IRA
B cells in an autocrine manner which is essential to
protect from bacterial infection [31, 32].

Neuron
Sensory nerves express GM-CSF receptors, and GM-
CSF is reported as a key mediator in bone-cancer pain
[33], osteoarthritis pain, and inflammatory arthritic pain
[34, 35]. A sensory nerve-specific knockdown of GM-CSF
receptors attenuated tumor-evoked pain [33]. GM-CSF
deficiency or neutralization also abolished osteoarthritis
pain and inflammatory arthritic pain [34, 35].

GM-CSF receptor
GM-CSF receptor consists of an α-subunit which binds
GM-CSF with low affinity (GMRα) and a signal-
transducing βc-subunit which is shared with the IL-3 and
IL-5 receptors [36]. The binary complex of GM-CSF and
GMRα interacts with a free βc-subunit and forms the
high-affinity hexamer complex [37]. Dodecamer complexes
formed by lateral aggregation of two hexamer complexes
enable Jak2 associated with a βc-subunit to dimerize and
transphosphorylate, but the hexamer complexes do not
[38]. This structure leads to dose-dependent responses of
GM-CSF receptor activation. Low concentration of
GM-CSF, as in normal condition, causes βc Ser585

phosphorylation and activates 14-3-3/PI-3 kinase
pathway which only leads to cell survival. Higher con-
centration of GM-CSF, as in inflammatory condition,
turns off βc Ser585 phosphorylation and mediated βc
Tyr577 phosphorylation and activation of Jak2/STAT5
pathway, Ras/mitogen-activated protein kinase pathway,
and PI-3 kinase pathway, resulting in promotion of cell
survival, proliferation, and activation [37].
The membrane-bound GM-CSF receptor is expressed

on myeloid cells [39] and on some non-myeloid cells,
such as epithelial cells [40], endothelial cells [41], and
neurons [33]. There also exists a soluble GM-CSF receptor
alpha subunit [42]. The function of this soluble GM-CSF
receptor is unclear, but it may be required to inhibit ligand
binding to cells which express membrane-bound GM-CSF
receptors [43].

Production of GM-CSF
A wide variety of cells can produce GM-CSF. Major
sources of GM-CSF are T and B cells, monocyte/macro-
phage endothelial cells, and fibroblasts. Neutrophils,
eosinophils, epithelial cells, mesothelial cells, Paneth cells,
chondrocytes, and tumor cells can also produce GM-CSF
[44]. The production of GM-CSF is stimulated by various
factors, including TNF, IL-1, toll-like receptor agonists,
and prostaglandin E2 [45, 46]. Recently, the pathogenicity
of GM-CSF-producing CD4 T cells in autoimmune and
inflammatory diseases is clarified and gaining increasing
attention [3, 4].
Recently, Th17 cells were clarified to have high plasticity

[47]. The “classical” Th17 cells driven by transforming
growth factor-β1 (TGFβ1) and IL-6 have been reported to
be weak inducers of inflammation [48, 49]. Conversely,
IL-23 together with IL-1β induces the differentiation of
highly pathogenic Th17 cells (Th1/17 cells) which also
express CXCR3 and T-bet and produce IL-17, IFN-γ, and
GM-CSF in mice [48, 49]. Recent studies clarified the pro-
duction of GM-CSF is critical for the pro-inflammatory
function of Th17 cells [3, 4]. In humans, IL-12, instead of
IL-23, together with IL-1β is reported to promote the
differentiation of Th1/17 cells [50]. Th1/17 cells can be
distinguished from Th1 cells by the expression of CD161,
a hallmark of Th17 progeny cells in humans [51]. A recent
study reported that IL-23 drives switch of surface signa-
ture from CCR6 to CCR2 which defines GM-CSF/IFNγ-
producing inflammatory Th17 cells and that CCR2 drives
these cells to the central nervous system (CNS) in
experimental autoimmune encephalomyelitis (EAE)
[52]. The pathway to induce GM-CSF production in
Th cells has not been clarified well yet. T-bet was reported
to drive CCR6−CCR2+ GM-CSF/IFNγ-producing Th17
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cell formation [52]. On the other hand, T-bet-deficient
Th17 cells are reported to have normal GM-CSF produc-
tion [3]. Ectopic RORγt expression showed that RORγt
drove GM-CSF production in Th cells [4]. Conversely,
RORγt-deficient CD4 T cells were also able to produce
GM-CSF [3]. These reports indicate the existence of
additional pathways.
GM-CSF is also reported to be produced by Th1 cells

and is crucial for their encephalitogenicity [4]. It was
reported that STAT4 regulated GM-CSF production in
Th1 cells but not in Th17 cells [53]. On the other hand,
the other report indicated that STAT4 regulated GM-
CSF production in both Th1 and Th17 cells by directly
binding to the Csf2 promoter [54]. Recent findings on
Th17 plasticity and heterogeneity indicate that it is
necessary to re-examine previous studies in this field.
In addition to these cells, recent studies reported the

existence of an IL-2- or IL-7-activated STAT5-
dependent novel subset of GM-CSF-producing Th cells
(Th-GM) which express low or undetectable T-bet,
GATA-3, or RORγt [55, 56] and that Th-GM cells were
able to induce more severe EAE than Th17 or Th1 cells
[55]. In humans, the CCR10+CCR4+CXCR3−CCR6− sig-
nature was reported to define Th-GM [56]. It is possible
that Th-GM cooperate with Th1/17 cells or Th1 cells to
exacerbate the development of inflammation.
Th2 cells are also reported as one of the GM-CSF-

producing cells [57]. A positive correlation between
GATA-3+ cells and GM-CSF+ cells in the nasal mucosa
of allergic rhinitis patients is reported [58]; however, the
precise mechanism of GM-CSF production in Th2 cells
has not been analyzed yet.

GM-CSF in autoimmune disease
Recent evidence revealed that GM-CSF played critical
roles in the development of many autoimmune diseases.
GM-CSF depletion or neutralization suppresses many
autoimmune disease models, including EAE [3, 4], arth-
ritis [59–61], arthritis-related interstitial lung disease
[60], nephritis [62], or psoriasis [63]. On the other hand,
GM-CSF administration is reported to improve the
models of myasthenia gravis [64], type 1 diabetes [65], or
colitis [66].

GM-CSF in the CNS
IL-17-producing Th17 cells have been reported as
central mediators of CNS inflammation in both EAE
and multiple sclerosis (MS) [67, 68]. However, recent
studies reported that GM-CSF was essential for the
encephalitogenicity of CD4 T cells in EAE and that IL-
17 was dispensable for the development of EAE [3, 4].
The concentrations of GM-CSF and the number of GM-
CSF-producing CD4 T cells in the cerebrospinal fluid
were reported to be elevated in MS patients [56, 69].
GM-CSF deficiency or neutralization was reported to pre-
vent the onset of EAE [70, 71]. In contrast, the administra-
tion of recombinant GM-CSF exacerbated EAE [70].
GM-CSF induces the proliferation and activation of

microglial cells which produce highly neurotoxic sub-
stances such as ROS, nitrogen species, and glutamate
[71, 72]. GM-CSF-producing CD4 T cells also induce the
polarization of neurotoxic M1-like phenotype of micro-
glia and promote the production of pro-inflammatory
cytokines such as IL-1β, IL-6, and TNFα, which also
contribute to myelin sheath damage [72, 73]. GM-CSF is
also required for the recruitment of peripheral myeloid
cells that contribute to blood-brain barrier and blood-
spinal cord barrier disruption and demyelization into the
CNS [74, 75]. These resident and infiltrating antigen-
presenting cells (APCs) re-stimulate T cells and lead to
further APC activation [76].
GM-CSF in arthritis
In the models of arthritis, IL-17 has been reported as a
main pathogenic cytokine as in EAE [77, 78]. IL-17
deficiency ameliorated collagen-induced arthritis (CIA)
but did not completely inhibit it [78]. IL-17 inhibition
was also reported to be an unsatisfactory method for the
treatment of rheumatoid arthritis (RA) [79]. These re-
ports indicated the existence of the other critical factors
in the development of arthritis.
In RA patients, the concentration of GM-CSF in

the synovial fluid and plasma was elevated [80, 81]
and the administration of recombinant GM-CSF exacer-
bated the disease activity [82]. Bone marrow adjacent to
the RA joints contains an increased number of
granulocyte-macrophage progenitors, colony-forming unit
granulocyte-macrophages (CFU-GM), which can differen-
tiate into granulocytes or macrophages with GM-CSF
stimulation [83] and also into osteoclasts with M-CSF and
RANKL stimulation [84]. The frequency of GM-CSF-
producing T helper cells in synovial fluid cells was also sig-
nificantly increased compared to peripheral blood mono-
nuclear cells (PBMCs) and correlated with erythrocyte
sedimentation rate (ESR) levels in juvenile idiopathic
arthritis (JIA) [85].
In mouse models of arthritis, GM-CSF deficiency or

neutralization prevented the development of arthritis
[59–61] and reduced the concentrations of TNF and
IL-1 in joints [59]. Conversely, GM-CSF administra-
tion exacerbated arthritis [86]. In arthritis of SKG
mice, GM-CSF secreted by T cells upregulated the
production of pro-inflammatory cytokines such as IL-
6 or IL-1β from macrophages [60, 87]. This in turn
induced further differentiation and expansion of IL-
17-producing and GM-CSF-producing CD4 T cells
[60] and exacerbated arthritis.
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GM-CSF in arthritis-related interstitial lung disease
SKG arthritis model develops chronic-progressive
interstitial lung disease (ILD) which histologically resem-
bles connective tissue disease-associated ILD (CTD-ILD)
[60, 88]. This model was characterized with massive infil-
tration of Th17 cells, GM-CSF-producing CD4 T cells,
and neutrophils with fibrosis in the lungs [60]. The
overexpression of GM-CSF was reported to induce severe
neutrophil, eosinophil, and macrophage infiltration with
fibrosis in the lungs [89, 90]. GM-CSF promotes macro-
phages to produce IL-6 and IL-1β and enhances differenti-
ation of IL-17A and/or GM-CSF-producing T cells and
therefore infiltration of neutrophils into the lungs [60].
Neutrophils were reported to produce ROS, MMPs,
neutrophil elastase, or myeloperoxidase and cause
parenchymal and stromal cell injury in the lungs [91–93].
GM-CSF also stimulates macrophages to release profibrotic
cytokines and induces fibrosis by direct stimulation of air-
way smooth muscle cells [90, 94]. GM-CSF neutralization
completely blocked the development of ILD in SKG mice
but IL-17A neutralization did not, indicating that GM-CSF
played a more critical role than IL-17A in this ILD [60].
The contribution of GM-CSF in human ILD has not

been analyzed well yet. In patients with pulmonary fibro-
sis, the concentration of GM-CSF in the bronchoalveolar
lavage fluid (BALF) was reported to be elevated [95, 96].
A recent report also reported that serum concentration
of GM-CSF was associated with ILD in patients with RA
[97]. Further studies to clarify the contribution of GM-
CSF in CTD-ILD are awaited.

GM-CSF in the intestine
In the intestine, GM-CSF contributes to mucosal barrier
function and resistance to bacterial translocation by pro-
moting the recruitment and activation of myeloid cells.
GM-CSF also promotes tissue repair via acceleration of
epithelial cell proliferation and macrophages as effectors
of wound healing [98–100].
Recent studies suggested that mucosal innate im-

munodeficiency caused by a variety of genetic defects
contributed the susceptibility of Crohn’s disease (CD)
and increased the translocation of pathogens to the
bowel tissue [101]. Higher levels of GM-CSF secretion
have been detected in mucosal lesions of inflammatory
bowel disease (IBD) compared with normal mucosa
[102, 103] and also in the colon lesions of dextran
sodium (DSS)-induced colitis mice model [104]. On the
other hand, in CD, the increased levels of GM-CSF
autoantibodies have been reported [105]. The levels of
GM-CSF autoantibodies correlated with the disease
activity and inversely correlated with the neutrophil
phagocytic activity in CD patients [105]. GM-CSF-
deficient mice were reported to be more susceptible to
acute DSS-induced colitis [106], and the severity of this
colitis was largely prevented by GM-CSF administration
[66, 107]. Conversely, GM-CSF neutralization was
reported to ameliorate 2,4,6-trinitrobenzene sulfonic
acid (TNBS)-induced colitis [108] and IL-23-driven col-
itis [109]. The overexpression of GM-CSF in the stom-
ach was reported to lead to autoimmune gastritis [110].
These data indicated the possibilities that both relative
shortage and excessive amount of GM-CSF could induce
colitis. Further studies are also needed to clarify whether
GM-CSF autoantibodies in CD patients are pathogenic
or not pathogenic and produced just as a result of
elevated GM-CSF.
There are some trials of GM-CSF administration for

the treatment of CD patients. Initial reports indicated a
high rate of clinical response and remission with
minimal adverse effects [111–113]. However, a recent
large randomized trial reported that it is not effective for
induction of clinical remission or improvement in active
CD [114]. The pathogenic mechanism of CD patients is
considered to be heterogeneous. Therefore, GM-CSF ad-
ministration might be effective only in some subgroups
of patients.

GM-CSF target therapy
There are several ongoing or completed clinical trials
targeting GM-CSF or GM-CSF receptor (Table 1).
Detailed information is available at ClinicalTrials.gov.
Although GM-CSF inhibition showed rapid clinical
response with no serious adverse reactions so far
[115–117], there are some potential side effects which
need to be monitored. The existence of GM-CSF
autoantibodies or the mutations of GM-CSF receptor
are reported to cause PAP [6]. On the other hand,
healthy individuals also have GM-CSF autoantibodies
[118], suggesting that the risk of PAP is increased
only when GM-CSF autoantibody levels are increased
above a critical threshold [119]. In addition, GM-CSF in-
hibition might exacerbate the existing Crohn’s disease as
mentioned above. An increased susceptibility to infections
in GM-CSF-deficient mice [5, 120] also indicates the risk
of infection in GM-CSF target therapy.

Mavrilimumab
Mavrilimumab is a human monoclonal antibody
against GM-CSF receptor α. In the first phase 1
study, 32 subjects with mild RA received single intra-
venous escalating doses of mavrilimumab and showed
its safety and tolerability. Reductions of acute-phase
reactants and disease activity score (DAS) 28 was also
observed [121].
A phase 2a randomized, double-blind, placebo-

controlled, ascending-dose study in subjects with
moderate to severe active RA (EARTH study) re-
ported significant efficacy with no serious adverse

http://clinicaltrials.gov/


Table 1 Clinical trials targeting GM-CSF

Target Drug Indication Trial Phase Regimen Status

GM-CSFR Mavrilimumab
(CAM-3001)

RA NCT00771420 I MTX + 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, and
10.0 mg/kg or placebo, single dose

Completed [121]

RA NCT01050998
(EARTH study)

IIa MTX + 10, 30, 50, and 100 mg or
placebo biweekly for 12 weeks

Completed [117]

RA NCT01706926
(EARTH EXPLORER 1)

IIb MTX + 30, 100, and 150 mg or
placebo biweekly for 24 weeks

Completed [122–125]

RA NCT01712399 IIb Long time safety study (5 years)
MTX + 100 mg biweekly

Active, not recruiting [126, 127]

RA NCT01715896
(EARTH EXPLORER 2)

II MTX + mavrilimumab biweekly or
golimumab alternating with placebo

Completed [128]

GM-CSF MOR103 RA NCT01023256 Ib/IIa 0.3, 1.0, and 1.5 mg/kg or
placebo weekly for 4 weeks

Completed [116]

MS NCT01517282 Ib 0.5, 1.0, and 2.0 mg/kg or
placebo biweekly for 10 weeks

Completed [115]

GM-CSF Namilumab
(MT203)

RA NCT01317797 Ib 150 and 300 mg or
placebo biweekly, 3 times

Completed [129]

RA NCT02393378 II MTX + namilumab or
adalimumab for 24 weeks

Recruiting [131]

RA NCT02379091 II MTX + 20, 80, and 150 mg or
placebo for 24 weeks

Recruiting [130]

Psoriasis NCT02129777 II 40, 100, 160, and 300 mg or
placebo on day 1; 20, 50, 80,
and 150 mg or placebo on
days 15, 43, and 71 (followed
by open-label extension study)

Recruiting [132]

GM-CSF KB003 RA NCT00995449 II 600 mg or placebo at
weeks 0, 2, 4, 8, and 12

Terminated [133]

Asthma NCT01603277 II 400 mg or placebo Completed

GM-CSF MORAb-022 RA NCT01357759 I Escalating doses of
MORAb-022 or placebo

Completed [134]

Abbreviations: GM-CSFR GM-CSF receptor, RA rheumatoid arthritis, MS multiple sclerosis, MTX methotrexate
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events [117]. In this study, 239 patients with active RA
despite methotrexate (MTX) treatment received subcuta-
neous mavrilimumab or placebo every other week for
12 weeks on stable-background MTX therapy and 55.7 %
of all mavrilimumab-treated participants met the primary
end point of achieving a ≥1.2 decrease from baseline in
the DAS (DAS28-CRP) vs 34.7 % of placebo-treated par-
ticipants at week 12. All mavrilimumab-treated patients
showed a response by week 2. The 100 mg dose of
mavrilimumab demonstrated a significant effect vs
placebo on DAS28-CRP <2.6, all categories of the
American College of Rheumatology (ACR) criteria,
and the Health Assessment Questionnaire Disability
Index.
In a subsequent phase 2b study (EARTH EXPLORER 1)

[122–125], 326 patients with moderate to severe RA
received an ascending dose of mavrilimumab or
placebo every 2 weeks plus MTX for 24 weeks and
showed an acceptable safety and tolerability. A statis-
tically significant difference in DAS28-CRP was
observed in all doses of mavrilimumab vs placebo at
week 12, and a significantly higher ACR response rate
of mavrilimumab-treated subjects than that of placebo
was observed at week 24. Particularly, the 150 mg
dose showed a significant difference vs placebo for
these parameters as early as week 1.
A nonrandomized, open-label phase 2 study to evaluate

the long-term safety and tolerability from day 1 through
to approximately 5 years is ongoing (NCT01712399)
[126]. This study enrolled RA patients who had completed
the EARTH EXPLORER 1 and 2 studies or were
rescued as inadequate responders at a predefined
time point, and they received 100 mg of mavrilimu-
mab every other week. At week 74, mavrilimumab
demonstrated sustained safety and efficacy with
DAS28-CRP <3.2 and <2.5 rates of 57.3 and 38.5 %,
respectively, and 68 % of patients showed no radio-
graphic progression [127].
A randomized, double-blind, placebo-controlled phase

2 study (EARTH EXPLORER 2) to compare the safety
and efficacy of mavrilimumab with those of golimumab,
an anti-TNF antibody in 120 patients with moderate to
severe RA who had an inadequate response to one or
two anti-TNF agents, was completed [128].
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MOR103
MOR103, which is a fully human monoclonal anti-
body against GM-CSF, has shown preliminary
evidence of safety and rapid efficacy (within 2 weeks)
in a randomized, double-blind, placebo-controlled,
dose-escalating phase 1b/2a trial for patients with
moderate RA (n = 96) [116]. Patients received four
times of weekly intravenous MOR103 or placebo, and
subjects receiving higher doses of MOR103 (1.0 and
1.5 mg/kg) showed significant improvement in
DAS28 scores and joint counts and significantly
higher European League Against Rheumatism re-
sponse rates than subjects receiving placebo.
MOR103 was also tested in a randomized, double-

blind, placebo-controlled phase 1b trial for patients
with relapsing-remitting MS or secondary progressive
MS. Patients received placebo or an escalating dose
of MOR103 every 2 weeks for 10 weeks and showed
acceptable tolerability of MOR103 [115].

Namilumab (MT203)
Namilumab is a human monoclonal antibody against
GM-CSF. In a randomized, double-blind, dose-
escalating phase 1b study, mild to moderate RA pa-
tients received three times of every 2-week injection
of namilumab and showed its safety and tolerability
[129]. The other trials testing namilumab is ongoing:
a dose-finding phase 2 study of namilumab in
combination with MTX in moderate to severe RA
patients with inadequate response to MTX or one
TNF inhibitor [130] and a phase 2 trial to evaluate
the efficacy and safety of the combination of the
existing MTX and namilumab vs adalimumab, an
anti-TNF antibody in patients with moderate to se-
vere early RA inadequately responding to MTX [131].
It is also being tested in a randomized double-blind

phase 2 trial for moderate to severe plaque psoriasis [132].

KB003
KB003 is a humanized monoclonal antibody targeting
GM-CSF. A randomized phase 2 study in RA patients
showed safety and tolerability in 3 months of repeated
dosing [133].

MORAb-002
MORAb-002 is a human monoclonal antibody against
GM-CSF. A randomized, double-blind phase 1 trial in
RA was completed recently [134].

Conclusions
Recent studies clarified the pivotal roles of GM-CSF
in the development of many autoimmune diseases.
Much attention has been focused on the inhibition of
GM-CSF as an attractive approach for the treatment
of these diseases. Further studies to clarify the
molecular mechanism of GM-CSF production and
precise role of GM-CSF in the development of auto-
immune disease are awaited with interest.
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