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Isolation of dental pulp stem cells with
high osteogenic potential
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Abstract

Dental pulp stem cells/progenitor cells (DPSCs) can be easily obtained and can have excellent proliferative and
mineralization potentials. Therefore, many studies have investigated the isolation and bone formation of DPSCs. In
most previous reports, human DPSCs were traditionally isolated by exploiting their ability to adhere to plastic tissue
culture dishes. DPSCs isolated by plastic adherence are frequently contaminated by other cells, which limits the
ability to investigate their basic biology and regenerative properties. Additionally, the proliferative and osteogenic
potentials vary depending on the isolated cells. It is very difficult to obtain cells of a sufficient quality to elicit the
required effect upon transplantation. Considering clinical applications, stem cells used for regenerative medicine
need to be purified in order to increase the efficiency of bone regeneration, and a stable supply of these cells must
be generated. Here, we review the purification of DPSCs and studies of cranio-maxillofacial bone regeneration using
these cells. Additionally, we introduce the prospective isolation of DPSCs using specific cell surface markers:
low-affinity nerve growth factor and thymocyte antigen 1.

Keywords: Bone regeneration, Dental pulp stem/progenitor cell, Flow cytometry, Isolation, Osteogenic potential,
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Background
Dental pulp, which contains connective tissue, mesen-
chymal cells, neural fibers, blood vessels, and lymphatics,
is located at the center of the pulp chamber enclosed in
mineralized dentin. The main functions of dental pulp
are to produce dentin and to maintain the biological and
physiological vitality of dentin [1]. Dental pulp stem
cells/progenitor cells (DPSCs) in adult dental pulp tissue
are induced to differentiate into odontoblasts to form
reparative dentin in order to protect dental pulp [2, 3].
DPSCs and stem cells from human exfoliated deciduous
teeth (SHEDs) have a high proliferative potential, an ex-
tensive self-renewal ability, and a multilineage differenti-
ation capacity, with osteogenic, chondrogenic, adipogenic,
neurogenic, and myogenic potentials [3–5]. In particular,
DPSCs and SHEDs have a high mineralization potential
and are considered to be useful in bone regenerative
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therapy [6–8]. Many studies regarding DPSCs have been
reported because dental pulp tissue is easily obtained. In
most previous reports, DPSCs were traditionally isolated
by exploiting their ability to adhere to plastic tissue
culture dishes [3]. However, adherent culture conditions
on plastic dishes inevitably change the expression of
surface markers and the biological properties of stem cells.
Consequently, stem cell properties may diminish during
adherent culture on plastic tissue culture dishes [9, 10].
Furthermore, DPSCs isolated based on their adherence to
plastic are frequently contaminated by cells with different
phenotypes. Additionally, the proliferative and osteogenic
potentials vary depending on the isolated cells. It is very
difficult to obtain cells of a sufficient quality to elicit the
required effect upon transplantation. Considering clinical
applications, stem cells used for regenerative medicine
need to be purified in order to increase the efficiency of
bone regeneration, and a stable supply of these cells must
be generated. Here, we review the purification of DPSCs
and the studies of cranio-maxillofacial bone regeneration
using these cells. Additionally, we introduce the prospect-
ive isolation of DPSCs with high osteogenic potential.
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Bone regenerative therapy in the cranio-
maxillofacial region
Bone regenerative therapies are required to treat many
diseases affecting the cranio-maxillofacial region such as
craniofacial abnormalities, bone defects following man-
dible tumor surgery, trauma, jaw bone necrosis, and
bone augmentation for dental implants. Bone regener-
ation plays significant roles in the recovery of function
and improvement of aesthetic disorders in the cranio-
maxillofacial area. Autogenous bones harvested from the
patient’s own body, such as the iliac bone, scapula, and
fibula, have been used for major reconstruction of the
maxillofacial area [11]. This bone grafting requires large-
scale surgery, e.g., reconstruction using vascular pedicle
bone grafts and particulate cancellous bone marrow
with a titanium mesh [11, 12]. Autogenous bone from
the chin and ramus of the mandible, allogenic bone,
and xenogenic bone have been used for minor bone
augmentation [13, 14].
Regenerative medicine studies have used various

approaches such as osteoinductive chemical factors,
osteoinductive growth factors, osteoinductive materials,
extracellular matrix, and cell-based tissue engineering.
Many studies of adult stem cell-based tissue engineering
have sought to effectively regenerate bone in the maxillo-
facial area. One recent line of progress in stem cell re-
search is bone regeneration using stem cells from bone
marrow (BMMSCs). BMMSCs not only have high osteo-
genic and chondrogenic potentials, but also have an excel-
lent regenerative potential to treat bone defects in vivo
[15]. Therefore, these cells are considered to be very useful
for bone regenerative therapies in the maxillofacial area.
Several groups showed that tissue-engineered bone con-
structed with BMMSCs elicits beneficial effects in a
mandibular defect model, a maxillary sinus floor ele-
vation model, and a jaw malformation model [16–18].
In humans, injectable tissue-engineered bone forma-
tion using BMMSCs and platelet-rich plasma was ap-
plied to 14 cases for ridge augmentation and dental
implant placement [19]. Furthermore, another group
applied BMMSCs seeded onto β-tricalciumphosphate
to upper jaw bone defects for dental implant place-
ment after trauma [20].
Dental stem cells are an attractive option for regenera-

tive therapy because they can be easily expanded to
generate the number required for generation of graft
materials. Furthermore, dental stem cells can be easily
obtained in comparison with BMMSCs because exfoli-
ated deciduous teeth and impacted third molar teeth are
often extracted for clinical or orthodontic reasons. All
dental stem cells (including DPSCs, SHEDs, periodontal
ligament stem cells, dental follicle stem cells, and stem
cells isolated from the apical papilla) are considered to
be obtained via minimally invasive methods when isolated
from these extracted teeth. They can give rise to pro-
liferative cells and osteogenic cells under appropriate
conditions [3, 4, 21–23].

Characterization of stem cells from dental pulp
DPSCs are traditionally isolated from dental pulp by
exploiting their ability to adhere to plastic tissue culture
dishes after enzyme digestion [3] (Fig. 1a). This tech-
nique gives rise to heterogeneous cell populations that
are frequently contaminated by other cells, including
osteoblasts, osteoprogenitor cells, fat cells, reticular cells,
macrophages, endothelial cells, and hematopoietic cells.
There is a pressing need to enrich regenerative DPSCs.
The study of DPSCs has been profoundly influenced by
earlier studies of BMMSCs because DPSCs are positive
for cell surface markers similar to those of BMMSCs, in-
cluding CD44, CD73, CD105, STRO-1, and CD146, but
are negative for CD45, CD34, CD14, C11b, CD79, CD19,
and HLA-DR [5]. SHEDs also highly express MSC
markers, including CD105, CD146, STRO-1, and CD29,
but are negative for CD31 and CD34 [5]. Various
methods have been tested to isolate and purify clonal
subsets of stem cells from dental pulp, including immu-
noselection of cell surface markers by fluorescence-
activated cell sorting (FACS) and magnetic-activated cell
sorting (MACS) (Table 1).
DPSCs were first isolated from dental pulp tissue

using cell surface markers, mainly STRO-1. Several
studies reported that STRO-1+ cells have a high
colony-forming ability and a multilineage differenti-
ation capability [4, 24–26] and express CD146, and a
pericyte marker (3G5) in perivascular and perineural
sheath regions [24]. STRO-1+ and CD146+ cells in pulp
of deciduous teeth are also located in perivascular re-
gions [4]. c-Kit+CD34+CD45− cells isolated from dental
pulp by flow cytometry have a potent proliferative
potential and readily differentiate into osteogenic pre-
cursors capable of generating three-dimensional woven
bone tissue chips in vitro [27]. Although STRO-1+c-Kit
+CD34+ human DPSCs (hDPSCs), which reside in a
perivascular niche, have a lower proliferative capacity
than STRO-1+c-Kit+CD34− hDPSCs; they strongly ex-
press Nestin and the surface antigen low-affinity nerve
growth factor (LNGFR, also called CD271) [28]. STRO-
1+c-Kit+CD34+ hDPSCs show a stronger tendency
toward neurogenic commitment than STRO-1+c-Kit
+CD34− hDPSCs, even though no significant differences
between the two subpopulations arise after differentiation
toward mesoderm lineages (osteogenic, adipogenic, and
myogenic). c-Kit+FLK-1+CD34+STRO-1+ stem cells iso-
lated from a plastic-adherent population by FACS have a
potent growth potential (92% colony formation from 3–4
seeded cells) and are multipotent [9]. Other groups have
demonstrated that colony-derived populations of DPSCs



Fig. 1 a Traditional isolation of dental pulp stem/progenitor cells (DPSCs) by adherent culture on dishes. b Prospective isolation of DPSCs by flow
cytometric identification of cell surface markers. c Representative fluorescence-activated cell sorting profiles of dental pulp cells. d A representative
phase-contrast micrograph of plastic-adherent colony-forming LNGFRLow+THY-1High+ cells with fibroblast morphologies. Scale bars = 100 μm
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express typical mesenchymal markers, including CD29,
CD44, CD90, CD166, and CD105 [29].
Subsequently, a side population (SP) was isolated from

dental pulp based on efflux of the fluorescent dye
Hoechst 33342 detected by FACS [30, 31]. This method,
which has been used on SP cell populations from
hematopoietic bone marrow, highly enriches cells with
stem cell activity [32]. SP cells from dental pulp exhibit
a self-renewal capacity with a long proliferative lifespan
and differentiate into odontoblast-like cells, neurons,
chondrocytes, and adipocytes [30, 31]. Furthermore,
CD31−CD146− SP cells and CD105+ cells from dental
pulp have high proliferative and migration activities and
a multilineage differentiation potential in vitro, including
adipogenic, dentinogenic, angiogenic, and neurogenic
potentials [33, 34]. In a whole dental pulp removal
model, transplantation of canine CD31−CD146− SP and
CD105+ DPSCs expressing angiogenic and neurotrophic
factors promotes regeneration of pulp in permanent
teeth [33, 35]. Immature dental pulp stem cells express
various embryonic stem cell markers [36]. A recent study
of SHEDs demonstrated that stage-specific embryonic
antigen-4+ cells derived from human deciduous dental
pulp tissue have a multilineage differentiation potential
in vitro [37].
Dental pulp originates from migrating neural crest

cells; therefore, stem cells have been isolated from dental
pulp using LNGFR, an embryonic neural crest marker
[38, 39]. LNGFR has been used to prospectively isolate
neural crest stem cells (NCSCs) from mammalian fetal per-
ipheral nerves [40]. NCSCs can self-renew and differentiate
into neurons, Schwann cells, and smooth muscle-like myo-
fibroblasts in vitro. The characteristics of NCSCs are similar
to those of MSCs. Cranial neural crest-derived cells con-
tribute to ectomesenchymal cells in the developing dental
papilla during tooth development [41, 42]. Cranial neural
crest-derived LNGFR+ ectomesenchymal stem cells have
odonto-differentiation potential [43]. Multipotent NCSCs
have been identified not only in the early embryonic stage,
but also in adulthood. Neural crest-related stem cells
were isolated from mature dental pulp in several stud-
ies [39, 44, 45]. The enriched cell population expresses
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Nestin, LNGFR, and SOX10 and can be induced to differ-
entiate into osteoblasts, melanocytes, and Schwann cells
[45]. Thymocyte antigen 1 (THY-1, also called CD90)+

glial cells generate multipotent MSCs that produce dental
pulp cells and odontoblasts [46]. LNGFR+THY-1+ neural
crest-like cells derived from human pluripotent stem cells
can differentiate into both mesenchymal and neural crest
lineages [47]. Therefore, LNGFR and THY-1 could be use-
ful to isolate clonogenic DPSCs from neural crest-derived
dental pulp tissue.

Prospective isolation of DPSCs using surface
makers
Although many methods to enrich DPSCs have been
devised, most assume that plastic-adherent cells are stem
cells. Adherent culture on plastic dishes inevitably
changes the expression of surface markers and gradually
diminishes the differentiation, proliferation, and migra-
tion potencies of stem cells [9, 10]. These methods may
not be able to reproduce the experimental results or
reveal the biological properties of DPSCs. It is important
to establish a method that can be used to prospectively
isolate purified DPSC populations without cell culture.
Therefore, specific cell surface markers need to be identi-
fied in order to isolate highly regenerative DPSCs. LNGFR
and THY-1 have been identified as selective markers for
the purification and phenotypic characterization of MSCs
from various sources such as bone marrow, decidua,
adipose tissue, and synovium [48, 49]. Especially in hu-
man bone marrow, LNGFR+THY-1+ cells are extremely
enriched with clonogenic cells (2 × 105-fold enrichment
vs. whole bone marrow cells) [48]. Our study demon-
strated that these markers can also be used to prospect-
ively isolate hDPSC populations, thereby avoiding the
need for prolonged cell culture [50] (Fig. 1b). Flow cyto-
metric analyses revealed five cell populations, namely,
LNGFR+THY-1+, LNGFRLow+THY-1High+, LNGFR−THY-
1Low+, LNGFR+THY-1−, and LNGFR−THY-1− (Fig. 1c).
Although LNGFR+THY-1+ cells in bone marrow exhibit
the highest clonogenic potential [48], assessment of the
number of colonies showed that LNGFRLow+THY-1High+

cells in dental pulp have a significantly higher colony-
forming potential than LNGFR+THY-1+ cells [50].
LNGFRLow+THY-1High+ cells are uniformly small and have
a spindle-shaped (MSC-like) morphology (Fig. 1d). The
cell population considered to be DPSCs comprises two
cell types, and it seems that purity can be increased by
selecting one of these. However, a LNGFRLow+THY-1High+

cell population was not observed in FACS profiles of
human BMMSCs stained with anti-LNGFR and anti-
THY-1 antibodies [48]. The discrepancy of the expression
pattern of cell surface markers between dental pulp tissue
and bone marrow tissue may be due to differences in the
origin of the cells. Dental pulp tissue is thought to be
derived from migrating neural crest cells, whereas bone
marrow tissue originates from the mesoderm and neural
crest [51, 52]. During development, neural crest cells from
the dorsal neural tube migrate to various locations and
divide into four main functional domains, namely, the
cranial neural crest, the trunk neural crest, the vagal and
sacral neural crest, and the cardiac neural crest. Neural
crest cells differentiate into a vast range of cells, including
neurons and glial cells of the peripheral nervous system,
smooth muscle cells, bone, and cartilage cells. Each
distinct cell type responds to specific migration and differ-
entiation signals to generate the appropriate cells and
tissues [53]. Therefore, the phenotypes and biological
properties of each cell type may differ.

Biological properties of stem cells from dental
pulp
DPSCs and SHEDs have a high proliferation rate and a
multilineage differentiation capability, including osteogenic,
chondrogenic, adipogenic, neurogenic, and myogenic po-
tentials [3–5]. Osteogenic differentiation of DPSCs is easily
induced in vitro by adding dexamethasone, ascorbic acid,
and β-glycerophosphate to culture medium supplemented
with fetal bovine serum [54, 55]. DPSCs express bone
markers such as alkaline phosphatase, type 1 collagen,
osteocalcin, and osteonectin under osteogenic induc-
tion [3, 56]. DPSCs have a faster population doubling
time and a higher mineralization potential than
BMMSCs [6, 7]. SHEDs have a higher proliferation rate
and a higher capability for osteogenic differentiation
than BMMSCs and even DPSCs [4, 57]. Overall, DPSCs
and SHEDs are more suitable than BMMSCs for miner-
alized tissue regeneration. In our study, prospectively
isolated LNGFRLow+THY-1High+ DPSCs showed a high
clonogenic potential and a multipotent differentiation
capability for mesenchymal lineages (Fig. 2a). The adi-
pogenic, osteogenic, and chondrogenic capacities of
LNGFRLow+THY-1High+ cells were higher than those of
LNGFR+THY-1+ cells (Fig. 2a, b) [50]. Interestingly, the
proliferation rates of LNGFRLow+THY-1High+ cells and
LNGFR+THY-1+ cells did not significantly differ at
early passages. Therefore, cultured hDPSCs isolated
from crude dental pulp cells contain two cell types that
originate from LNGFRLow+THY-1High+ and LNGFR+THY-
1+ cells. High LNGFR expression may inhibit differenti-
ation of hDPSCs into osteoblasts and adipocytes [38],
while low LNGFR expression might maintain the stem-
ness of hDPSCs in the dental pulp microenvironment.
THY-1+ dental pulp cells localized in the sub-odontoblastic
layer can differentiate into hard tissue-forming cells and
may thus provide a source of odontoblastic cells [58]. THY-
1+ human adipose-derived stromal cells show osteogenic
potential in vitro and significantly increase bone formation
in a calvarial defect model [59]. THY-1+ cells in other



Fig. 2 a Adipogenic (Adipo), osteogenic (Osteo), and chondorogenic (Chondro) differentiation of LNGFRLow+THY-1High+ cells. Scale bars = 100 μm.
b Adipogenic (Adipo), osteogenic (Osteo), and chondorogenic (Chondro) differentiation of LNGFR+THY-1+ cells. Scale bars = 100 μm
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tissues also show a high proliferative capacity and osteo-
genic potential [60, 61]. These reports suggest that THY-1
is important to isolate stem cell-like cells with a potent
mineralization potential. LNGFRLow+THY-1High+ DPSCs
display a high proliferation rate and a long-term survival
using a transillumination procedure such as cranial win-
dows when transplanted into cranial defects of immunode-
ficient mice [50]. Therefore, LNGFRLow+THY-1High + cells
can increase the cell viability in cell transplantation, and
this is considered to be advantage for differentiation into
osteoblasts and secretion of each growth factor to promote
bone morphogenesis. For successful tissue engineering, for-
mation of blood vessels toward the transplanted tissue is
required for transportation of oxygen and nutrients to the
transplanted cells. When transplanted, stem cells such as
DPSCs promote angiogenesis for bone regeneration in the
maxillofacial region. DPSCs have a paracrine effect by
stimulating the formation of blood vessels in the host tissue
through secretion of angiogenic factors [62–68]. Further-
more, DPSCs and SHEDs may have stronger immunomod-
ulatory properties and high anti-apoptotic activity [69–76].
Thus, DPSCs and SHEDs could also have potential for
clinical applications in autologous stem cell transplantation
for bone regenerative therapy.

Studies of bone regeneration in the cranio-
maxillofacial region using stem cells from dental
pulp
There are many studies of bone regeneration using
DPSCs and SHEDs in the cranio-maxillofacial region
in vivo because these cells have high osteogenic potential
(Table 2). Several studies reported that transplantation
of expanded DPSCs and SHEDs with scaffolds, such as
fibroin, collagen membrane, and hydroxyapatite/trical-
cium phosphate ceramic particles, repairs critical-size
cranial bone defects of mice and rats [8, 77, 78]. Yamada
et al. demonstrated that cell-based therapy using stem
cells derived from deciduous teeth and dental pulp of
puppies together with platelet-rich plasma can induce new
bone formation in critical-size mandibular bone defects
[79]. Ito et al. demonstrated that the high osteogenic abil-
ity of DPSCs contributes to the osseointegration of dental
implants [80]. Alkaisi et al. reported that SHEDs can
enhance bone consolidation in a rabbit mandibular dis-
traction model [81]. A study of a large animal model
showed that stem cells from deciduous teeth of miniature
pigs regenerate bone to repair critical-size swine mandible
bone defects [82]. In terms of clinical applications of
DPSCs in humans, a biocomplex constructed from DPSCs
and a collagen sponge scaffold was reported to be useful
for bone tissue repair in human mandibular bone defects
after extraction of third molars [83]. However, these cells
might have been contaminated by non-regenerative cells
with a poor bone-formation ability because these studies
did not use purified cells.
Several studies investigated bone formation using

hDPSCs purified by MACS for the repair of bone de-
fects. Pisciotta et al. reported that STRO-1+ hDPSCs
cultured in human serum-containing medium repair
critical-size parietal bone defects in immunocomprom-
ised rats [84]. Giuliani et al. reported that CD34+

hDPSCs together with a collagen sponge regenerate
compact bone with uniform vascularization after tooth
extraction [85]. Ricco et al. reported that CD34+c-kit
+STRO-1+ hDPSCs with fibroin scaffolds induce mature
bone formation and repair critical-size bone defects in
immunocompromised rats [86].
In our study, LNGFRLow+THY-1High+ and LNGFR+THY-1+

cells prospectively isolated by FACS were transplanted
into critical-sized calvarial defects to evaluate their therapeutic
potential [50]. LNGFRLow+THY-1High+ hDPSCs exhibit
long-term survival and osteoblastic differentiation
in immunohistochemical analyses. Microcomputed
tomography-guided morphometric analysis showed that
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LNGFRLow+THY-1High+ cells induce the highest level of
bone regeneration after transplantation into calvarial
defects. The bone-formation potential of LNGFRLow

+THY-1High+ cells is markedly higher than that of
LNGFR+THY-1+ cells. Therefore, traditionally cultured
DPSCs isolated from crude dental pulp cells are consid-
ered to comprise two cell types, namely, highly osteo-
genic cells and lowly osteogenic cells. We believe that
enrichment of regenerative cells will lead to successful
bone regenerative therapy through high levels of en-
graftment, survival, and proliferation post-
transplantation.

Conclusions
Considering clinical applications for bone regeneration,
cell-based therapy using DPSCs requires a prolonged
period of culture to obtain a sufficient number of cells
for transplantation because only a small number of
DPSCs can be obtained from a single tooth. Therefore, it
is important to stabilize the quality and quantity of
transplanted cells by ensuring they have high prolifera-
tive and osteogenic capabilities. Cultured DPSCs isolated
from crude dental pulp cells are considered to comprise
two cell types: regenerative and non-regenerative cells.
Hence, isolation of the optimal cell population for bone
regeneration is important for regenerative therapy.
There is a pressing need to identify selective markers of
DPSCs with high osteogenic potential. LNGFR and
THY-1 can be used to prospectively isolate a pure popu-
lation of DPSCs from human dental pulp by FACS.
However, purification of DPSCs using these markers is
still insufficient compared with that of BMMSCs. Conse-
quently, it is necessary to further enhance their purity by
using additional markers. Furthermore, specific markers
of other easily obtained dental stem cells should be
identified to acquire a cell source for cranio-maxillofacial
bone regeneration in a future study because DPSCs
cannot be obtained from non-vital teeth.
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