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Abstract 

To date, many kinds of immune cells have been identified, but their precise roles in intestinal immunity remain 
unclear. Understanding the in vivo behavior of these immune cells and their function in gastrointestinal inflammation, 
including colitis, inflammatory bowel disease, ischemia–reperfusion injury, and neutrophil extracellular traps, is critical 
for gastrointestinal research to proceed to the next step. Additionally, understanding the immune responses involved 
in gastrointestinal tumors and tissue repair is becoming increasingly important for the elucidation of disease mecha-
nisms that have been unknown. In recent years, the application of intravital microscopy in gastrointestinal research 
has provided novel insights into the mechanisms of intestine-specific events including innate and adaptive immu-
nities. In this review, we focus on the emerging role of intravital imaging in gastrointestinal research and describe 
how to observe the intestines and immune cells using intravital microscopy. Additionally, we outline novel findings 
obtained by this new technique.
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Background
The gastrointestinal tract is a very complex integrated 
organ that includes a prominent intestinal immune sys-
tem and plays an important role in life support, includ-
ing digestion and absorption, while coexisting with the 
gut microbiome. There is no question about the impor-
tance of research into intestinal inflammation, but most 
findings to date have been based on static evaluation of 
histological sections, flow cytometry, or an alternative 
index such as the myeloperoxidase activity. Because con-
ventional research methods do not provide insights into 

the nature of cellular interactions in vivo during intesti-
nal inflammation, more physiological in  vivo, real-time 
mechanistic analysis has been desired. Recent progress of 
intravital microscopy (IVM) has enabled the visualization 
and quantification of immune cell recruitment in  vivo 
[1]. It provides invaluable information about immune 
cell motion, proliferation, and death processes, as well 
as cell–cell interactions at the single-cell resolution in a 
number of organs and disease models. In recent years, 
IVM has played an emerging role in intestinal research, 
yielding many insights that were not possible by previous 
methods. Furthermore, with the development of various 
transgenic mice and fluorescent antibodies, the subdivi-
sion of immune cells that can be observed and the appli-
cation of IVM are expanding.

This review describes how IVM is used to image the 
behavior of the gut and associated immune cells during 
steady-state or inflammatory conditions. We also provide 
an overview of the invaluable findings obtained by this 
novel technique with respect to intestinal inflammation, 
cancer, and tissue repair.
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Intravital imaging of the gastrointestinal tract
The development of microscopy techniques from simple 
light microscopy to confocal microscopy, including laser 
scanning and spinning disk, and two-photon laser scan-
ning microscopy (TPLSM) has had a significant effect on 
studying immune responses in living organs using IVM 
[2, 3]. In a confocal microscope, light is focused to a point 
and emitted fluorescence passes through a pinhole before 
reaching the detector. A spinning disk consists of multi-
ple pinholes on a rotating disk, which has the advantage 
of shortening the scanning process. However, the pen-
etration depth of confocal microscopy is limited, mak-
ing it difficult to image all layers of the intestinal wall. 
In TPLSM, a pulsed laser directs two excitation pho-
tons of approximately half the energy onto the sample. 
When these two, low-energy photons hit the fluorophore 
simultaneously, they are excited to the same level as one 
high-energy photon. This principle provides numerous 
advantages including high resolution, deep site imaging 
of at least 100  µm below the organ surface, less photo-
toxicity, and less photobleaching compared with conven-
tional confocal microscopy. These advantages make it 
suitable for long-term imaging of pathophysiological 
changes in all layers of the intestinal tract. These prop-
erties of microscopies have been discussed elsewhere in 
detail [2–4], and we focus on intestinal imaging and the 
findings obtained by IVM in this review.

Difficulty in controlling intestinal peristalsis and flat-
tening is a major issue when applying intravital imaging 
to the intestinal tract. To reduce motion artifacts and 
perform optimal imaging, it is necessary to fix organs 
using a suction window or glue, appropriate anesthesia 
to minimize motion artifact, administration of butyl-
scopolamine, or expanding the intestinal wall [5–7]. 
Imaging preparation has been developed on the basis of 
certain conditions such as the target intestinal layer and 
whether the microscope is inverted or upright (Figs. 1 
and 2). A confocal microscope has a limited capacity to 
image deep into the intestine, and therefore, the opti-
mal images can be obtained by observing from the side 
of the object to be observed, whether it is the mucosa 
or the serosa. We believe that it is important to under-
stand the aforementioned pros and cons of the confocal 
microscope and TPLSM and to select the microscope 
that provides the best image of the subject (i.e., intes-
tinal layer, immune cells, disease model, etc.) to be 
observed. Notably, Rakhilin et  al. reported an intravi-
tal colonic window using a ferromagnetic scaffold for 
chronic imaging [8]. Using this technique, they imaged 
fluorescently labeled Lgr5-positive stem cells, bacteria, 
and immune cells in the live murine colon. In oncologi-
cal studies, a surgical orthotopic organoid transplan-
tation approach has been used to visualize colorectal 
cancer progression in vivo [9].

Fig. 1  Preparation for intravital intestinal imaging using an inverted microscope. Representative intestinal fixation method for intravital intestinal 
imaging from the mucosa (upper row) or serosa (lower row) using an inverted microscope. Details of each method are described in the box below
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Various fluorescent reporter mice are available for 
intestinal imaging using IVM. In fact, many new findings 
have been obtained by capturing the real-time move-
ment of immune cells in the inflamed intestinal tract 
(Table  1). Specific fluorescent antibodies are similarly 
useful to identify immune cells and delineate intestinal 
structures such as blood vessels and lymphatic capillar-
ies [10, 11]. As a novel technique for intravital imaging, 
mesenteric collecting lymphatic vessel cannulation has 
enabled in  vivo lymph flow assessment [12]. Addition-
ally, Orzekowsky-Schroeder et  al. demonstrated the 
utility of TPLSM excited autofluorescence to differen-
tiate the cell types in living intestines [13]. Intriguingly, 
metabolic labeling of gut anaerobic bacteria has enabled 
visualization of the anaerobic microbial niche by vari-
ous methods, such as IVM and non-invasive whole body 
imaging, which can be used to observe microbial coloni-
zation and host–microbe interactions in real time [14]. 
Moreover, when an ultrashort pulsed laser beam in the 
order of femtoseconds is irradiated onto an asymmetric 
material such as a crystal, light with half the wavelength 
or twice the frequency of the incident laser beam is emit-
ted. In recent years, with the development of ultrashort 
pulse lasers such as TPLSM, they have also been used 
for biological imaging [15]. Second harmonic genera-
tion (SHG) is induced in  vivo by collagen, myosin, and 

tubulin. In particular, collagen is abundant and gener-
ated with high efficiency. Therefore, it can be visualized 
specifically in living tissue by SHG imaging and observed 
without staining (Fig. 3). Maier et al. imaged layers within 
murine colorectums via SHG and showed that submu-
cosa had the largest collagen fiber diameters, followed by 
serosa and muscle [16]. They also showed that collagen 
fibers aligned with muscle fibers in the two muscular lay-
ers. These findings would support to identify which of the 
layers we are observing during intestinal imaging. More-
over, SHG imaging is useful for observing how collagen 
is produced in response to intestinal inflammation, infec-
tion, and tumor development.

Intestinal immune responses in inflammation
Enterocolitis/inflammatory bowel disease (IBD)
In recent years, various new findings have been obtained 
using the mouse enterocolitis model and IVM technique 
[27, 28]. Observations targeting various immune cells are 
also progressing. For example, using LysMeGFP + mice 
as a neutrophil-targeted study, Lammers et  al. revealed 
slowing of eGFP + neutrophils in vessels and influx into 
small intestinal mucosal tissue via formyl peptide recep-
tor 1 within 2 h after oral gavage of gliadin, the immuno-
genic component of gluten and trigger of celiac disease 
[17]. Using TPLSM, another group reported the activities 

Fig. 2  Preparation for intravital intestinal imaging using an upright microscope. The upper row shows a typical intestinal fixation method for in vivo 
intestinal imaging using an upright microscope. The intestine is fixed using a suction window. The lower row shows representative intestinal images 
in CX3CR1GFP/+CCR2RFP/+ mice
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Table 1  Fluorescent-labeled mice for intravital imaging of immune cells in the intestine

DSS dextran sulfate sodium, LPS lipopolysaccharide

Target gene/promotor Fluorescence Labeled cells Disease model Observed phenomena Reference

LysM eGFP Neutrophils Intestinal ischemia–rep-
erfusion
Celiac disease

Cell recruitment/extrava-
sation
Cell recruitment/accumu-
lation

Hashimoto et al. [5]
Lammers et al. [17]

CCR2 RFP CCR2 + monocytes DSS colitis Changes of cellular phe-
notype

Honda et al. [18]

CX3CR1 GFP CX3CR1 + monocytes/
macrophages

DSS colitis
Salmonella infection

Changes of cellular phe-
notype
Phagocytic function

Honda et al. [18]
Niess et al. [19]

CX3CR1 × CD11c GFP × YFP Dendritic cells Salmonella infection Phagocytic function Farache et al. [20]

TCRδ eGFP TCRδ + intraepithelial 
lymphocytes

Indomethacin/LPS-
induced intestinal leakage

Changes in cell move-
ment
Intercellular contacts

Sumida et al. [21]
Hu et al. [22]

Foxp3 tdTomato Regulatory T cells Intestinal inflammation Changes in cell move-
ment

Sujino et al. [23]

CD2 × IL13 GFP × tdTomato Group 2 innate lymphoid 
cells

Helminth infection Intercellular contacts Lok et al. [24]

Rorc × IL22 GFP × tdTomato Group 3 innate lymphoid 
cells

Intestinal inflammation Changes in cell move-
ment

Jarade et al. [25]

Eo tdTomato, GFP Eosinophils Helminth infection Cell recruitment/accumu-
lation

Nguyen et al. [26]

Fig. 3  Imaging of the second harmonic generation using a two-photon laser scanning microscope. Representative images of second harmonic 
generation (SHG) in the liver (left) and colon (right) at the steady state obtained under a two-photon laser scanning microscope
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of extracellular signal-regulated kinase and protein 
kinase A in neutrophils in inflamed intestines [29]. In an 
oxazolone-induced colitis model, IVM with fluorescence 
resonance energy transfer technology showed frequent 
Ca2+ signaling in B cells of cecal patches during the early 
phase of colitis, suggesting B cell differentiation into 
plasma cells [30]. In a monocyte-focused study, interrup-
tion of the fractalkine–CX3CR1 axis ameliorated colitis 
through regulation of intravascular monocyte behaviors 
on the venous endothelium of inflamed colons in oxa-
zolone-induced colitis models [31]. In a salmonella infec-
tion model, IVM revealed that CX3CR1 + macrophages 
and CD103 + dendritic cells efficiently phagocytosed 
salmonella using intraepithelial dendrites [19, 20]. Vari-
ous T cells exist in the intestinal tract, and research using 
IVM has been widely conducted. A cell dynamics study 
of Foxp3 + regulatory T cells and intraepithelial CD4 + T 
cells revealed their distinct, but complementary roles in 
suppressing intestinal inflammation [23]. Lok et al. used 
a CD2/IL-13 double reporter mouse to image group 2 
innate lymphoid cells [24]. They showed increases in the 
IL-13 + ILC2 size and movement in Peyer’s patch after 
helminth infection, but shorter cellular contacts with T 
cells. Additionally, T cells facilitated the patrolling attrib-
utes of group 3 innate lymphoid cells under inflamma-
tory conditions by producing the chemokine CCL25 [25]. 
Intravital imaging has also shown that GPR55-deficient 
intraepithelial lymphocytes migrate faster and interact 
more extensively with epithelial cells [21]. Imaging of 
the jejunal mucosa in lipopolysaccharide-treated TcrdE-
GFP mice showed that ɤδ intraepithelial lymphocytes 
maintain prolonged contact with shedding enterocytes 
[22]. Another study focused on eosinophils and estab-
lished EoCre/tdTomato+/− mice [26]. Eosinophils were 
observed by IVM to rapidly surround murine-specific 
helminth parasites that invaded the small intestines. To 
image mast cells in  vivo, c-Kit-eGFP mice or Mcpt5-
CreROSA26-EYFP double transgenic can be used [32], 
but they have not been widely used for intravital imag-
ing during intestinal inflammation. Moreover, Koike et al. 
imaged intestinal microcirculation in a murine necrotiz-
ing enterocolitis model using TPLSM and demonstrated 
that remote ischemic conditioning in the early stages of 
disease progression counteracted the poor microcircula-
tory response to formula feeding and preserved the arte-
riole flow velocity, diameter, and flow volume [33, 34].

IBD is a general term for diseases that cause uncon-
trolled chronic inflammation in the intestinal mucosa 
and generally refers to ulcerative colitis and Crohn’s 
disease. The dextran sulfate sodium (DSS) colitis model 
has been widely used as an animal model of IBD. Intra-
vital imaging of DSS-induced colitis using TPLSM and 
an organ-stabilizing system revealed an irregularity and 

disappearance of crypts, infiltration of immune cells, and 
increased rolling of white blood cells along the vascular 
wall [35]. Administration of 5A peptide decreased leuko-
cyte–endothelium interactions [36]. Furthermore, real-
time imaging of a bacterial translocation model showed 
that RFP-Escherichia coli translocated from the luminal 
side of the intestines into blood vessels. Administra-
tion of steroids ameliorated intravital three-dimensional 
dynamic pathological changes caused by DSS-induced 
colitis [37]. Our observations showed that the gut micro-
biota affects the tissue repair process in DSS-induced 
colitis by facilitating blood-derived monocyte conver-
sion from classical CCR2hiCX3CR1lo monocytes to 
alternative CCR2loCX3CR1hi monocytes [18]. Peritoneal 
GATA6 + macrophages were microbiome-independently 
recruited to the colon in a DSS colitis model and contrib-
uted to ameliorating intestinal inflammation [38].

Intestinal ischemia–reperfusion injury (IRI)
Intestinal IRI is related to various clinical conditions, 
such as ischemic enteritis, abdominal surgeries, and 
organ transplantation, and reduces patient survival 
because of bacterial translocation, systemic inflamma-
tion, intestinal necrosis, and multiple organ failure. We 
observed real-time neutrophil recruitment during IRI 
in small intestines using LysMegfp mice and TPLSM [5]. 
This method enabled real-time assessment of neutro-
phil recruitment and pathophysiological changes in the 
intestinal wall in vivo. Voisin et al. showed that blocking 
neutrophil elastase-dependent neutrophil extravasation 
may be an effective strategy to reduce the number and 
activation of neutrophils in IRI, but it may also inhibit 
the recruitment of tissue-healing immune cells includ-
ing monocytes and M2 macrophages [39]. Systemic 
treatment of mice with sulforaphane, an isothiocyanate 
with anti-inflammatory characteristics, reduced platelet 
activation and blocked leukocyte adhesion, significantly 
reducing leukocyte rolling at 2 and 8  h after intestinal 
IRI [40]. Moreover, the transfer of sulforaphane-treated 
platelets significantly reduced rolling leukocytes during 
reperfusion.

NETs
Neutrophil extracellular traps (NETs) are the forma-
tion and release of sticky web-like structures composed 
of decondensed chromatin filaments that are decorated 
with histones and neutrophil granule proteins [41]. NETs 
play a pivotal role in intestinal infection by helping neu-
trophils catch and kill pathogens. Moreover, excessive 
NET formation has proinflammatory characteristics 
and induces innate immune responses [42]. Although 
many IVM studies on NETs have focused on the liver, 
Tanaka et al. successfully visualized NETs in vivo in the 
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postcapillary venules of the murine cecum using the 
lipopolysaccharide-induced sepsis model [43]. They also 
observed leukocytes with cytoplasmic vacuoles that 
adhered to the vascular endothelium in LPS-treated mice 
at the subcellular level, and some of them released NETs. 
As discussed below, it has also been shown that colon 
cancer induces NETs in the liver, thereby promoting cir-
culating cancer cell adhesion and liver metastasis [44]. 
Thus, the relationship between intestinal inflammation 
and NETs is a very interesting research field, but research 
using IVM has not progressed thus far and future devel-
opment is desired.

Immunity in colorectal cancer
IVM techniques have been applied to gastrointesti-
nal cancer research. Mainly by analyzing colorectal 
cancer (CRC) metastasis models using tumor-specific 
transgenic mice and fluorescence-labeled cancer cell 
lines, the dynamics of tumor cells, tumor angiogenesis, 
chemotherapy responses in the liver microenvironment, 
and interactions with various immune cells have been 
clarified [45–48]. IVM through an abdominal imaging 
window allowed imaging a single step of CRC metas-
tasis formation in the liver over 2  weeks [49]. Single 
extravasated CRC tumor cells proliferated to form pre-
micrometastases, where tumor cells were active and 
motile within a confined region of the growing clone. 
Conversely, tumor cells within micrometastases were 
immotile. Fumagalli et  al. reported real-time migration 
patterns of Lgr5 + and Lgr5 − CRC cells using a CRC 
mouse model generated by orthotopic transplantation of 
CRC organoids (RFP-Confetti and CRC Lgr5eGFR) [50]. 
They found that the majority of CRC cells in circula-
tion were Lgr5 − and caused distant metastases in which 
Lgr5 + CRCs appeared. Another study focused on the cell 
cycle and performed intravital imaging of fluorescence 
ubiquitination-based cell cycle indicator (Fucci)-bear-
ing human CRC cells [51]. Unexpectedly, S/G2/M Fucci 
green cells were more motile and invasive compared 
with Fucci red G1 cells. Intravital imaging of subcutane-
ously implanted CRC organoids using an imaging win-
dow enabled live genetic lineage tracing at the single-cell 
level over 30 days [52]. Dormant LGR5 + CRC stem cells 
are characterized by p27 expression, and IVM revealed 
that LGR5 + p27 + cells survive chemotherapy and then 
undergo clonal expansion. Intrasplenic injection of the 
CRC cell line MC38-RFP showed a significant increase in 
hepatic sinusoidal adhesion of MC38-RFP cells in tumor-
bearing mice (TBM) compared to non-TBM, DAase1- or 
NET inhibitor-treated TBM, and PAD4 − / − TBM [44]. 
These data suggest that colon cancer induces NETs in 
the liver to facilitate the adhesion of circulating cancer 
cells and hepatic metastases. Similarly, the same group 

also reported high expression of NOD1 in human and 
murine CRC cell lines, and NOD1 activation augmented 
CRC cell adhesion in hepatic sinusoids [53]. As another 
model, Shimura et  al. established a xenograft model of 
metastatic gastric cancer in the peritoneum using RFP-
expressing gastric cancer cell line NUGC4 [54]. Overall, 
these results suggest that combining IVM data, which 
focuses on the real-time movement of cancer cells, and 
in  vitro experimental results would enable the develop-
ment of new treatment strategies for gastrointestinal 
cancer.

Interestingly, a recent study showed that perito-
neal GATA6 + macrophages invade CRC liver metas-
tases directly from the peritoneal cavity by sensing 
tumor-induced mesothelial injury [55]. Moreo-
ver, intravital imaging has revealed that peritoneal 
GATA6 + macrophages upregulate PD-L1 upon tak-
ing up apoptotic bodies from tumor cells and promote 
the growth of CRC liver metastases. These findings 
might lead to novel therapeutic strategies for CRC liver 
metastasis and its recurrence by manipulating peri-
toneal GATA6 + macrophages and considering the 
intraperitoneal cavity as a more effective route of drug 
administration.

Mechanisms of tissue repair in intestinal injury
The study of the immune system during tissue damage 
is important for elucidating tissue repair mechanisms, 
and research using intravital imaging has provided 
many insights. Studies using a liver sterile injury model 
have shown that the first immune cells mobilized dur-
ing tissue remodeling are platelets and neutrophils 
and recently revealed GATA6-positive peritoneal cav-
ity macrophages [56, 57]. Subsequently, accumula-
tion of CCR2-positive classical monocytes occurs, 
which are converted to CX3CR1-positive monocytes 
and macrophages that act in tissue repair [58]. iNKT 
cells orchestrate monocyte conversion from inflam-
mation to resolution by producing interleukin-4 [59]. 
In a model of acute intestinal injury, IVM showed that 
neutrophils followed by CCR2-positive monocytes 
are accumulating into the injured area (Fig.  4). CCR2, 
Nr4a1, and the microbiome were necessary for appro-
priate monocyte recruitment, conversion, and devel-
opment to mature CX3CR1-positive macrophages, 
allowing debris removal and rapid repair of the vascu-
lature [18]. The same mechanisms are needed to repair 
colonic ulcers caused by DSS-induced colitis. Recently, 
we have shown that large F4/80hiGATA6-positive peri-
toneal cavity macrophages promptly accumulate at 
damaged intestinal sites via a direct route from the 
peritoneal cavity [38]. Compared with bloodstream-
derived monocytes/macrophages, recruitment of cavity 
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macrophages depended on ATP released by dead cells 
and exposed hyaluronan at the injury site. They con-
tributed to the removal of necrotic cells, revasculari-
zation, and collagen deposition and thus resolution of 
intestinal tissue damage. The roles of platelets, neutro-
phils, and iNKT cells in intestinal tissue repair have not 
been investigated in detail and are a topic for further 
research.

The epithelial barrier function contributes to maintain-
ing intestinal tissue homeostasis. Focusing on continuous 
renewal and turnover of the intestinal epithelium, imag-
ing of intestinal crypts by IVM with an abdominal win-
dow and Lgr5EGFP−Ires−CreERT2 mice enabled tracing the 
fate of individual Lgr5 + intestinal stem cells and their 
progeny over time [60]. Bruens et al. used this approach 
and revealed that crypt fission and fusion in the intestinal 
epithelium regulate crypt numbers as a counterbalancing 
mechanism [61]. Another study showed that, when crypt 
cells were ablated, they were expelled from the crypt base 
by the rapid motion of crypt cells [62]. Subsequently, 
Lgr5 + stem cells and Paneth cells restored the altera-
tion in the pattern. Interestingly, these mechanisms were 
impaired by inhibition of the ROCK pathway and aging. 
Using RAC1 knockout mice, it has also been shown that 
impairment of epithelial RAC1 functions causes cell 
overcrowding and epithelial leakage [63]. Future studies 
may reveal the mechanisms of the motion dynamics of 
crypt cells in more detail, leading to new insights into the 
intestinal epithelium repair process.

Conclusions and future perspectives
The development of intravital imaging has provided 
new insights into in vivo, real-time immunological pro-
cesses in many organs and disease models. We recently 
revealed that dysbiosis alters the localization of intes-
tinal lamina propria macrophages [18], and imaging 
of the immuno-biome will be challenging, but very 
intriguing in the future. In vivo fluorescence imaging of 
the gastrointestinal system is a new research field and 
has a great advantage of being able to directly capture 
physiological phenomena in the living state. Because it 
is possible to elucidate the pathophysiology of intesti-
nal inflammation, which was previously only evaluated 
statically, and to evaluate the mechanism-of-action of 
drugs over time, it is expected to be a new experimental 
model suitable for clinical research.
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