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Abstract 

The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate pro-
cess that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular 
matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM 
myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, 
and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds 
and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their 
impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which fre-
quently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide 
a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the sig-
nificance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold dur-
ing SM regeneration.
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Introduction
Skeletal muscle (SM) is a highly coordinated tissue com-
posed of myofibers formed by myogenic progenitor cell 
fusion [1] and is primarily responsible for skeletal sup-
port, body movement, and temperature regulation. Fur-
thermore, SM has an impressive ability to regenerate 
after injury, and this ability depends on resident muscle 
satellite (stem) cells (MSCs) located in unique anatomical 

sites along the margins of myofibers [2]. MSCs dynami-
cally regulate the development and progression of 
myofibers using several transcription factors that serve 
as key regulators of the quiescent state and activators of 
progression to the myogenic lineage [3].

Regeneration is an essential process in living organisms 
because tissues and organs are all susceptible to damage, 
and thus, mechanisms responsible for their repair must 
be in good working order to conserve physiology and 
function [4]. Multiple cell types, especially MSCs, are 
involved in the SM regeneration triggered in response 
to damage, injury, or disease [5, 6]. When a muscle is 
injured, MSCs are activated, transform into myoblasts, 
and fuse to produce myotubes, which eventually develop 
into new muscle fibers [7]. The three phases of SM regen-
eration are the inflammatory/destructive, healing, and 
remodeling phases [8].
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The ECM is a complex assembly that supports cells 
mechanically, sustains biochemical signaling, and acts 
as a key player in SM regeneration [9]. ECM com-
ponents interact with respective cell receptors and 
regulate proliferation, migration, and differentiation 
processes [10]. ECM molecules and transmembrane 
receptors aid muscle contraction, growth, regenera-
tion, and development [11]. Acellular ECM and bio-
logical scaffolds of ECM proteins have been used 
to regenerate tissues like cardiac muscles, SM, and 
abdominal skin [12]. Furthermore, extensive research 
has been conducted on the use of acellular ECM scaf-
folds, especially in combination with progenitor cells, 
for treating severe muscle mass damage (known as 
volumetric muscle loss; VML) [13]. The destruction/
removal of the basal lamina and the loss of other struc-
tural muscle components, such as MSCs, are the great-
est constraints to VML regeneration [14]. Repairing 
SM damage caused by VML is a complex and challeng-
ing process that involves multiple stages. ECM scaf-
folds offer a potential clinically applicable regenerative 
biomaterial that can aid this process as they are eas-
ily obtained, inexpensive, and have the potential to 
improve muscle regeneration, all of which make them 
excellent materials for VML repair [15].

Several ECM components, including fibromodu-
lin (FMOD) [16–18], matrix gla protein (MGP) [19], 
and dermatopontin (DPT) [20], have been linked to 
the regulation of myogenesis and the promotion of 
SM regeneration. In a recent study on the role of the 
IgLON family in myogenesis and SM regeneration, we 
found IgLON4 promotes myogenesis and regeneration 
by enhancing cell adhesion and maintaining myotube 
orientation [21] and that IgLON5, which helps in myo-
blast adhesion and differentiation, is essential for myo-
genesis and regeneration [22]. For the present review, 
we accessed over 500 articles, including original 
research and review papers related to SM regeneration 
published in peer-reviewed journals from 2012 to Feb 
2023, using the search terms “skeletal muscle regen-
eration”, “skeletal muscle extracellular matrix”, “ECM 
scaffold”, and “volumetric muscle loss”. We aimed to 
provide an in-depth understanding of the complex 
mechanisms involved in the formation and repair of 
SM with a focus on the types of stem cells involved 
in the process. In addition, we reviewed the essential 
roles of ECM in normal muscle and severely damaged 
muscle under VML conditions and in SM regeneration 
and recent developments. This review was undertaken 
to advance our understanding of the role of ECM in 
muscle regeneration and provide insights into the 
most recent research conducted on the topic.

Skeletal muscle formation and regeneration
SM is essential for movement, postural support, and sta-
bility [23]. Typically, muscle mass maintenance depends 
upon the balance between the rates of protein synthesis 
and breakdown, and this balance is influenced by sev-
eral factors, including dietary status, hormonal balance, 
physical activity/exercise, injury, and disease [1]. Myo-
genesis is the process of creating new muscle cells and 
fibers, and this process occurs in three stages, viz. embry-
onic myogenesis, secondary myogenesis, and postnatal 
myogenesis, that sometimes overlap [24]. During embry-
onic myogenesis, primary myotubes are formed and the 
fundamental muscle architecture is established, which 
are both crucial for the development and organization 
of muscle tissue [25]. Later during embryonic develop-
ment, secondary myogenesis results in the formation 
of secondary myofibers, which constitute most muscle 
mass present at birth. The postnatal phase is mediated by 
MSCs and is responsible for postnatal growth and muscle 
regeneration [26–28]. These phases are controlled pri-
marily by the myogenic regulatory factors (MRFs), Myf5, 
MyoD, myogenin, and MRF4/Myf6, which are commonly 
referred to as the “master” transcription factors that gov-
ern the regulation of SM development and differentiation 
[29, 30] (Fig. 1).

In mice, embryonic SM development begins around 
embryonic day 10.5 (E10.5) and depends on PAX3+ mus-
cle progenitors. The initial development of muscle fib-
ers occurs when PAX3 + /PAX7 + progenitor cells within 
the myotome undergo differentiation, which involves 
the activations of MRFs and leads to the differentiation 
and fusion of these progenitor cells. Fetal myogenesis 
begins later at about E14.5 in the mouse; muscle pro-
genitors that express PAX7 differentiate into myoblasts 
that merge with pre-existing embryonic fibers to enable 
muscle development [31]. Several signaling pathways are 
involved in the transition of SM progenitor cells from 
proliferation to differentiation. The NOTCH signaling 
system is a significant regulator of the muscle progenitor 
pool and reportedly suppresses myoblast differentiation 
in various animal models [32–34]. The proliferation state 
of muscle progenitors is also maintained by BMP signal-
ing [35]. The involvement of WNT signaling during myo-
genesis differs across embryonic and fetal stages. WNT is 
not required for muscle progenitor or fiber development 
in the developing limbs of mice, but fetal progenitor 
expression of a constitutively active form of ß-catenin, an 
effector of the WNT pathway, enhances PAX7+ cell num-
bers [36].

SM possesses a notable ability to regenerate after inju-
ries that substantially alter ECM and muscle cells [37]. 
Muscle regeneration after injury appears to be similar to 
muscle formation during embryogenesis and is regulated 
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by various mechanisms, which involve cell–cell and cell–
matrix interactions and the extracellular secretions of 
various factors [37, 38]. SM regeneration involves three 
phases: inflammation-induced destruction during the 

early phase, regeneration with myogenic cell activation 
to proliferate and differentiate, resulting in the forma-
tion of new myofibers, and finally, the reconstitution of 
a functional contractile apparatus [39] (Fig.  2). Muscle 

Fig.  1  SM regeneration: A muscle regulatory factors at the different stages of myogenesis, B three distinct layers of the SM (epimysium, 
perimysium, and endomysium) and associated ECM components

Fig.  2  Illustration depicting the three distinct stages of SM regeneration following injury, including inflammation at the site of injury, fibroblast 
proliferation, formation and maturation of new fiber, and regeneration
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regeneration typically begins within the first week of 
injury, peaks at 2  weeks, and then gradually subsides 
[40]. Several types of cells have been associated with SM 
myogenesis and regeneration [41, 42], but MSCs are the 
primary repository of adult muscle regeneration. Some 
important cell types are described below and summa-
rized in Table 1.

SM regeneration and development is highly conserved 
in many species, including humans and model animals. 
Nonetheless, there are significant differences between the 
species. MSCs of both mice and humans can self-renew, 
differentiate into myoblasts, and contribute significantly 
to SM growth and regeneration. MSCs from both spe-
cies can participate in in  vivo muscle regeneration due 
to their stem cell characteristics; however, there are sig-
nificant differences between the two. Although PAX7 is 
the standard marker for MSCs in both species, mouse 
MSCs also contain CD34, c-Met, integrin α 7, m-cad-
herin, and nestin, whereas human MSCs do not [59]. Dif-
ferent markers are also used to characterize quiescent, 
activated, proliferating, and differentiating MSCs in mice 
and humans. Furthermore, in  vitro studies have shown 
that both mouse and human MSCs can differentiate into 
osteogenic and adipogenic pathways [60]. SM regenera-
tion mechanisms differ substantially between species. 
Different species use different mechanisms for muscle 
regeneration. While some species rely on myofiber dedi-
fferentiation, others use satellite-like cells (SLCs), which 
are similar to MSCs found in vertebrates. Xenopus and 
other amphibians repair muscle by increasing the num-
ber of Pax7 + myogenic cells, whereas salamanders use 
dedifferentiated myofibers or SLCs, depending on the 
species [61].

Stem cells for muscle regeneration
Muscle regeneration involves various cell types. Myo-
genic cells, MSCs, and pluripotent stem cells differenti-
ate into muscle cells and promote muscle repair. On the 
other hand, non-myogenic cells, such as mesenchymal 
stromal cells, adipose-derived stem cells, bone marrow-
derived stem cells, and pericytes, reduce inflammation, 
and support muscle repair by secreting growth factors 
(GFs) and cytokines [43, 62]. Fibroblasts and endothe-
lial cells also have potential muscle regenerative prop-
erties [63], and it now appears that combining multiple 
cell types with different regenerative properties offers a 
promising means of treating muscle-related disorders, 
including muscular dystrophy and myopathies.

Muscle satellite cells (MSCs)
MSCs, also known as adult SM stem cells, reside 
beneath the basal lamina near muscle fibers [60]. SM 
has a remarkable potential for regeneration. Even after 

several rounds of damage, the MSC pool remains con-
stant, which demonstrates that the MSC population is 
self-renewing [64]. MSCs are stimulated upon receiving a 
signal of injury, leading to the secretion of a range of pro-
inflammatory cytokines, namely interleukin-6 (IL-6) and 
interferon-gamma (IFN-γ). These cytokines play a cru-
cial role in activating, proliferating, and facilitating the 
migration of MSCs [65]. Tumor necrosis factor (TNF-α) 
exerts distinct regulatory effects on MSCs based on their 
varying levels of expression. Specifically, when TNF-α is 
present at high levels, it facilitates the processes of prolif-
eration and migration, while concurrently impeding the 
process of differentiation. The levels of TNF-α exhibit a 
decline as the inflammatory response subsides, while 
MSCs initiate the process of differentiation and subse-
quently generate new muscle fibers [66, 67]. The initia-
tion of the inflammatory response in damaged muscle is 
triggered by the secretion of chemotactic factors, such as 
monocyte chemotactic protein 1, macrophage-derived 
chemokine, fractalkine, urokinase-type plasminogen 
activator/urokinase-type plasminogen activator recep-
tor (uPA/uPAR), and vascular endothelial growth factor 
(VEGF), by MSCs [68, 69].

Furthermore, activated MSCs multiply and move to 
sites of injury to produce myoblasts [70] (Fig.  2), which 
then fuse to injured myofibers or combine to produce 
myotubes that mature to form new muscle fibers [71]. 
The PAX genes and MRFs, such as MyoD, Myf5, MyoG, 
and Myf6, primarily regulate MSC proliferation and dif-
ferentiation during myogenesis, and sequential activa-
tions and repressions of Pax3/7 and MRFs are required 
for myoblast progression through myogenesis. All MSCs 
express Pax7, which is vital for the self-renewal and post-
natal maintenance of these cells [72].

MSCs are essential for the natural regeneration of mus-
cles after damage caused by exercise, injury, or disease. 
Stem cell therapy utilizing these cells is a promising treat-
ment for muscle-related disorders, such as muscular dys-
trophies. Table 1 presents a comprehensive summary of 
the regenerative function of MSCs in different conditions 
and diseases, outlining their therapeutic potential for 
muscle regeneration.

Mesenchymal stem cells (MeSCs)
MeSCs are multipotent stem cells that generate mesoder-
mal cells like osteoblasts, adipocytes, and chondrocytes 
[73], and several investigations have shown that MeSCs 
are involved in SM regeneration [74, 75]. However, the 
efficacies claimed for the myogenic differentiation of 
human MeSCs are debatable. Bone marrow-derived 
MeSCs are a type of multipotent, nonhematopoietic 
adult stem cell that can also be used for SM regenera-
tion due to their myogenic potential [76]. For example, 



Page 5 of 15Ahmad et al. Inflammation and Regeneration           (2023) 43:58 	

Ta
bl

e 
1 

Ro
le

 o
f M

SC
s 

in
 m

us
cl

e 
re

ge
ne

ra
tio

n 
ac

ro
ss

 v
ar

io
us

 c
on

di
tio

ns
 a

nd
 th

e 
cu

rr
en

t s
ta

te
 o

f t
ec

hn
iq

ue
s/

th
er

ap
ie

s

Sy
st

em
/a

pp
lic

at
io

n
Ro

le
 o

f M
SC

s 
in

 re
ge

ne
ra

tio
n

Te
ch

ni
qu

es
/t

he
ra

pi
es

Re
fe

re
nc

e

SM
 in

ju
ry

M
SC

s 
pr

ol
ife

ra
te

 a
nd

 d
iff

er
en

tia
te

 in
to

 n
ew

 m
yo

fib
er

s, 
pr

om
ot

in
g 

m
us

cl
e 

tis
su

e 
re

pa
ir

St
em

 c
el

l t
he

ra
py

, g
en

e 
th

er
ap

y,
 ti

ss
ue

 e
ng

in
ee

rin
g

[4
3]

Ex
er

ci
se

-in
du

ce
d 

m
us

cl
e 

da
m

ag
e

M
SC

s 
ai

d 
in

 re
pa

iri
ng

 e
xe

rc
is

e-
in

du
ce

d 
m

us
cl

e 
da

m
ag

e,
 le

ad
in

g 
to

 m
us

cl
e 

gr
ow

th
 a

nd
 a

da
pt

at
io

n
A

ct
iv

at
io

n 
of

 e
nd

og
en

ou
s 

M
SC

s 
or

 tr
an

sp
la

nt
at

io
n 

of
 e

xo
ge

no
us

 M
SC

s
[4

4,
 4

5]

A
gi

ng
Th

e 
re

du
ct

io
n 

in
 M

SC
s 

nu
m

be
r a

nd
 re

ge
ne

ra
tiv

e 
ab

ili
ty

 p
ar

tly
 c

on
tr

ib
ut

es
 

to
 a

ge
-r

el
at

ed
 d

ec
lin

e 
in

 m
us

cl
e 

fu
nc

tio
n

Ex
er

ci
se

 in
te

rv
en

tio
n,

 n
ut

rit
io

na
l i

nt
er

ve
nt

io
n,

 s
te

m
 c

el
l t

he
ra

py
[4

6,
 4

7]

Ti
ss

ue
 e

ng
in

ee
rin

g
M

SC
s 

di
ffe

re
nt

ia
te

 in
to

 m
yo

bl
as

ts
 a

nd
 fu

se
 to

 fo
rm

 n
ew

 m
us

cl
e 

fib
er

s, 
en

a-
bl

in
g 

th
e 

re
pa

ir 
of

 d
am

ag
ed

 o
r l

os
t m

us
cl

e 
tis

su
e

Bi
op

rin
tin

g,
 s

ca
ffo

ld
-b

as
ed

 e
ng

in
ee

rin
g,

 m
ic

ro
flu

id
ic

 d
ev

ic
es

[4
8,

 4
9]

N
eu

ro
m

us
cu

la
r d

is
ea

se
s

M
SC

s 
ai

d 
in

 re
ge

ne
ra

tin
g 

m
us

cl
e 

fib
er

s 
in

 d
iff

er
en

t n
eu

ro
m

us
cu

la
r c

on
di

-
tio

ns
, i

nc
lu

di
ng

 A
LS

 a
nd

 s
pi

na
l m

us
cu

la
r a

tr
op

hy
Tr

an
sp

la
nt

at
io

n 
of

 M
SC

s 
di

re
ct

ly
 in

to
 a

ffe
ct

ed
 m

us
cl

es
 o

r s
ys

te
m

ic
 d

el
iv

er
y 

of
 M

SC
s

[5
0,

 5
1]

Ca
nc

er
 c

ac
he

xi
a

M
SC

s 
ex

pe
rie

nc
e 

re
du

ce
d 

re
ge

ne
ra

tiv
e 

ca
pa

ci
ty

 a
nd

 c
on

tr
ib

ut
e 

to
 m

us
cl

e 
w

as
tin

g
N

ut
rit

io
na

l i
nt

er
ve

nt
io

n,
 e

xe
rc

is
e 

in
te

rv
en

tio
n,

 s
te

m
 c

el
l t

he
ra

py
, c

o-
cu

ltu
re

 o
f M

SC
s 

w
ith

 s
up

po
rt

iv
e 

ce
lls

[5
2]

D
ia

be
tic

 m
yo

pa
th

y
M

SC
s 

m
ay

 p
la

y 
a 

ro
le

 in
 th

e 
de

ve
lo

pm
en

t o
f d

ia
be

tic
 m

yo
pa

th
y 

an
d 

ar
e 

po
te

nt
ia

l t
he

ra
pe

ut
ic

 ta
rg

et
s 

fo
r m

us
cl

e 
re

ge
ne

ra
tio

n 
in

 d
ia

be
te

s
Ex

er
ci

se
 in

te
rv

en
tio

n,
 n

ut
rit

io
na

l i
nt

er
ve

nt
io

n,
 s

te
m

 c
el

l t
he

ra
py

, c
o-

cu
ltu

re
 

of
 M

SC
s 

w
ith

 s
up

po
rt

iv
e 

ce
lls

[5
3,

 5
4]

Co
ng

en
ita

l m
yo

pa
th

ie
s

M
SC

s 
co

nt
rib

ut
e 

to
 m

us
cl

e 
re

ge
ne

ra
tio

n 
in

 v
ar

io
us

 c
on

ge
ni

ta
l m

yo
pa

-
th

ie
s, 

su
ch

 a
s 

D
uc

he
nn

e 
m

us
cu

la
r d

ys
tr

op
hy

 a
nd

 c
on

ge
ni

ta
l fi

be
r-

ty
pe

 
di

sp
ro

po
rt

io
n

Ce
ll 

th
er

ap
y,

 e
xo

n 
sk

ip
pi

ng
 th

er
ap

y,
 in

je
ct

io
n 

of
 M

SC
s 

di
re

ct
ly

 in
to

 a
ffe

ct
ed

 
m

us
cl

es
, o

r s
ys

te
m

ic
 d

el
iv

er
y 

of
 M

SC
s

[5
5,

 5
6]

Re
ge

ne
ra

tiv
e 

m
ed

ic
in

e
M

SC
s 

ar
e 

us
ed

 a
s 

a 
po

te
nt

ia
l t

he
ra

py
 fo

r m
us

cl
e 

re
ge

ne
ra

tio
n 

in
 v

ar
io

us
 

co
nd

iti
on

s
M

SC
-b

as
ed

 ti
ss

ue
 e

ng
in

ee
rin

g,
 tr

an
sp

la
nt

at
io

n 
of

 e
xo

ge
no

us
 M

SC
s

[5
7,

 5
8]



Page 6 of 15Ahmad et al. Inflammation and Regeneration           (2023) 43:58 

they are capable of differentiating into myoblasts in myo-
genic medium, or when co-cultured with myoblasts [71, 
77], and after local (intramuscular injection) or systemic 
delivery (intravenous/intra-arterial injection), bone mar-
row-derived MeSCs have been reported to contribute 
to myogenesis [78–80]. Based on these findings, MeSCs 
have attracted interest in the regenerative medicine field 
over the last decade, particularly for SM regeneration, 
due to their advantageous properties, ready availability, 
multipotency, and active paracrine activity.

Adipose‑derived stem cells (ADSCs)
ADSCs can differentiate into osteocytes, adipocytes, 
neuronal cells, vascular endothelial cells, myocytes, pan-
creatic cells, or hepatocytes and have morphological and 
immunophenotypic properties comparable to MSCs [81]. 
In myogenic media, ADSCs differentiated into myoblasts, 
as evidenced by the expressions of MyoD and myosin-
heavy chains. Furthermore, pretreatment of ADSCs 
with IL-4 and stromal cell-derived factor-1 improved 
their myogenic ability [82]. ADSCs have shown remark-
able promise for SM regeneration, and clinical trials have 
demonstrated their efficacy in enhancing muscle regen-
eration and function [83]. In addition, studies on mouse 
models of muscular dystrophy have shown that ADSCs 
can differentiate into SM cells and effectively treat COL 
VI deficiency [84].

Pericytes
Pericytes are perivascular stem cells found in the walls of 
capillaries and microvessels. These multipotent cells can 
differentiate into various cell types, including adipogenic, 
chondrogenic, and myogenic cells. Pericytes have been 
isolated from adipose tissue, pancreas, and SM [42, 73, 
85] and, like MSCs, exhibit high myogenic ability in vitro 
and in vivo after muscle injury or in the presence of mus-
cular dystrophy [42, 85, 86]. Pericytes in SM are multi-
potent and can differentiate into either the myogenic or 
adipogenic lineage [85]. Birbrair et al. found that type-1 
pericytes contribute to fat infiltration in SM during mus-
cle degeneration/regeneration, whereas type-2 pericytes 
form muscle and not fat after injury [85]. Muscle peri-
cytes play crucial roles in the maintenance of myofiber 
size and stem cell quiescence, and when intra-arterially 
injected into dystrophin-null mdx mice colonized host 
SM and produced dystrophin-positive muscle fibers [42].

Induced pluripotent stem cells (iPSCs)
iPSCs can be produced in  vitro by adding reprogram-
ming elements, referred to as Yamanaka factors, to 
somatic cells. iPSCs can develop into practically any type 
of cell and have an unlimited potential for self-renewal 
in culture [87, 88]. Therefore, the ability of these cells 

to develop into myogenic cells makes them a desirable 
choice for myogenic regeneration [73, 89, 90]. Pax7 or 
MyoD overexpression can induce the differentiation of 
iPSCs into myogenic cells [91], and various studies have 
investigated the production of functioning SM in vitro by 
promoting the myogenic differentiation of iPSCs and fus-
ing these cells with existing myofibers after in vivo trans-
plantation [92–95]. In another study, human fibroblasts 
were used to produce iPSCs, and then Pax7 was activated 
to cause iPSC differentiation into myogenic progenitors 
with the ability to grow in vitro [96]. Table 2 summarizes 
the functions of SM regeneration stem cells.

Volumetric muscle loss
VML is a complex and heterogeneous type of SM injury 
caused by the surgical or traumatic excision of SM, as is 
commonly observed after chronic trauma [104]. Reduced 
muscle volume leads to the loss of contractile myofibers 
and depletion of the MSC reservoir, and this decline in 
MSCs at injury sites is accompanied by worsening mus-
cle fibrosis, which reduces the ability of muscle to repair 
and regain contractile function [105, 106]. Currently, no 
standard treatment is available for completely replacing 
trauma-related VML. However, MSCs proximate to mus-
cle fibers aid long-term SM maintenance and are acti-
vated in response to stimuli such as physical damage or 
growth signals. Following activation, MSCs divide sym-
metrically to increase their numbers or asymmetrically to 
create progenitor cells. Furthermore, myogenic progeni-
tors undergo proliferation and subsequent differentiation 
through fusion under certain conditions to repair dam-
aged fiber integrity and function. However, this ability is 
limited to a certain extent [97].

Several other therapies, such as tissue engineering 
[107], biological scaffolds composed of naturally occur-
ring ECM [107, 108], hydrogels [109], immune response 
activation [110], cell transplantation [111], autologous 
grafting [112], scar tissue debridement, and minced skel-
etal tissue transfer [113], have been reported to repair 
VML. Natural polymers such as alginate, collagen (COL), 
and fibrin have been widely used in SM engineering [114, 
115], and ECM molecules, especially COL, which acts as 
a reservoir for GFs, may also provide GFs to injury sites 
and increase muscle cell migration [116]. When incorpo-
rated into tissues, fibrin gels can increase myoblast sur-
vival and differentiation into myofibers [117]. In mouse 
models, fibrin scaffolds with a micro-thread architec-
ture were also found to repair VMLs [118]. Furthermore, 
some medications like formoterol improved the strength 
and metabolism of VML-injured muscle [119], and in 
another study, treatment of VML with a fibrin hydrogel 
containing 450 g/mL of laminin-111 (FBN450) promoted 
muscle regeneration [120].
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Regenerating SM to completely repair VML is a diffi-
cult and complex procedure that requires several stages. 
Many researchers have used an in  vitro tissue culture 
phase to increase myoblast proliferation and achieve the 
functional maturity of SM constructs. Several approaches 
have been used to promote SM regeneration, including 
GFs, co-culture with supportive cell types, mechanical 
stretching, and electrical stimulation [121]. Numerous 
GFs are involved in muscle reconstruction and help to 
develop functional scaffolds by increasing myocyte con-
tractility [45, 71, 122], fibroblast growth factor [123], 
prostaglandin E2 [124], hepatocyte growth factor [118], 
insulin-like growth factor [125, 126], platelet-derived 
growth factor, and Notch signaling are all important for 
MSC proliferation. Moreover, pro-angiogenic agents, 
including vascular endothelial growth factor, have been 
used to promote the vascularization of SM constructs 
[127]. Researchers appear to be focusing on the use of 
new biomaterials and tailored ECM scaffolds to enhance 
muscle regeneration after VML.

Skeletal muscle ECM
The ECM is a network of structural molecules that facili-
tates biochemical signaling and provides mechanical 
support for cells, and thus, plays an essential role in regu-
lating cellular proliferation, migration, and differentiation 
by interacting with cell surface receptors [10]. SM ECM 
is characteristically composed of COLs (predominantly 
COL IV and VI), fibronectin (FN), laminins, and others 
[128]. These ECM components and their specific recep-
tors, such as integrin α7β1 and dystroglycan, play crucial 
roles in the development and maintenance of SM homeo-
stasis [11]. A variety of muscle-related disorders, such as 
muscle dystrophy, are caused by deformities or mutations 
in ECM proteins, which can interact with MSCs and 
influence MSC activation, self-renewal, proliferation, and 
differentiation [129]. The proper functioning of MSCs is 
dependent on the regulation of the SM ECM, and there-
fore, any changes in ECM makeup can substantially alter 
the behavior of MSCs, which demonstrates that SM ECM 
and its contents are essential for the proper regulation of 
MSCs [130].

ECM in muscle pathophysiology
ECM acts as a scaffold and helps organize muscle fibers 
into distinctive parallel arrangements that confer mus-
cle strength and contractile ability. In addition, ECM 
contains molecules that support blood vessel formation, 
immune cell recruitment, and molecules that control 
muscle growth and repair [10, 131]. The ECM is com-
posed of approximately 300 proteins that are collectively 
referred to as the core matrisome, which is composed 
of 43 COL subtypes, 36 proteoglycans, and nearly 200 

complex glycoproteins [132]. This matrisome maintains 
ECM homeostasis, which is essential for individual cell 
function and cell-to-cell communication in a coordinated 
and systematic manner, and if this balance is disturbed, 
organ system functioning can be negatively impacted 
and the risk of severe diseases, including fibrotic diseases 
and cancer, increased [133]. Interestingly, it has been 
reported that certain genetic muscle-related diseases 
are primarily caused by mutations in ECM components 
and their receptors. In fact, over 150 ECM molecules are 
known to interact with the adhesion site of the integrin 
receptor [134, 135].

Key constituents of SM ECM
SM ECM is a complex structure composed mainly of 
COLs, laminin, FN, and proteoglycans, which are cru-
cial for the development, function, and physiology of SM 
[136, 137]. SM ECM is composed of three distinct layers 
epimysium, perimysium, and endomysium. The perimy-
sium enfolds bundles of muscle fibers that originate in 
the epimysium, a dense connective tissue that surrounds 
entire muscles. Each muscle fiber is surrounded by a 
specialized membrane known as the endomysium, also 
referred to as basal lamina [138]. These three layers con-
tain specific ECM molecules, viz. COL-1, undulin, tenas-
cin, and FN in epimysium, COL-IV, laminin, FN, PGs, 
growth factor, and nidogen in endomysium, and COL-I, 
III, V, and VI in perimysium [136] (Fig. 2).

COLs are the most abundant type of SM ECM protein 
and account for 1 to 10% of SM dry weight and provide 
a structural framework for ECM. COL fibers are organ-
ized in a parallel manner that enhances SM strength and 
contractile ability [9, 136]. There are 28 forms of COL, 
and 11 of these have been identified in mature SM and 
are expressed during SM development [139]. COL VI 
regulates MSC self-renewal and SM regeneration and 
has been shown to regulate MSC activity by modulating 
muscle stiffness [140].

Laminins represent a glycoprotein family that plays 
a crucial role as fundamental constituents within the 
basement membranes [141]. Laminins are composed 
of a combination of five alpha (α) chains, three beta (β) 
chains, and three gamma (γ) chains, which collectively 
assemble into diverse heterotrimeric isoforms [141]. They 
provide mechanical support, enhance muscle cell-to-
ECM adhesion, and can control muscle development and 
repair [136]. The typical expression of distinctive sub-
types of laminins facilitates the process of regenerating 
damaged SM. Laminin-1 has the ability to maintain the 
connection between muscle fibers and the basal lamina, 
enhance muscle function in mdx mice, alleviate degen-
eration and inflammation in SM, expedite the process of 
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muscle regeneration, and facilitate the proliferation and 
migration of myoblast cells [136, 142].

FN participates in ECM organization and the tethering 
of ECM to underlying muscle cells by integrin receptors 
[143]. Laura Lukjanenko et al. revealed that a decrease in 
FN levels in the SM milieu of elderly mice impairs mus-
cle stem cell activation and maintenance via alterations 
in integrin-mediated signaling [144]. We recently identi-
fied FN-derived short peptides (FNIN 2 and FNIN 3) that 
promote cell adhesion, proliferation, the differentiation of 
primary and stem cells, and MSC viability in vitro [145].

Earlier, we investigated the roles of FMOD, DPT, and 
MGP in SM at various stages of development and dur-
ing SM regeneration. FMOD plays a crucial role in the 
maintenance of ECM and facilitates muscle regeneration 
by increasing the recruitment of MSCs to sites of injury. 
FMOD is upregulated after muscle injury promotes new 
blood vessel formation and immune cell recruitment, and 
regulates ECM remodeling by regulating enzyme activ-
ity [16, 146]. DPT, another ECM protein, plays a role in 
the myogenic process by increasing cell adhesion and 
muscle differentiation while decreasing cell proliferation. 
DPT and FN inhibit each other in the myogenic setting, 
whereas DPT and FMOD positively regulate each other 
and promote muscle differentiation [20]. The observed 
decrease in myogenic marker and ECM gene expression 
in MGP knockdown cells suggests that MGP is involved 
in the regulation of myogenesis. Furthermore, the reduc-
tion in myostatin expression suggests that MGP may play 
a role in coordinating the control of myostatin expression 
[19].

ECM in SM regeneration
It has been well established that ECM plays important 
roles in SM regeneration by serving as a scaffold for mus-
cle cells to attach, proliferate, and transform in response 
to muscle injury or disease [135], and intact ECM can aid 
muscle fiber regeneration in damaged SM. Muscle fiber 
injury initially causes ECM hyperplasia, which increases 
SM tissue stiffness and acts to prevent further damage 
due to coordinated deadhesion and fibrosis. As MSCs 
differentiate, ECM is remodeled, and adhesion protein 
expressions are increased [147], whereas in cases of SM 
injury or myopathy, genes associated with ECM remod-
eling are upregulated, for example, metalloproteinases 
(MMP-2 and MMP-9), FN, Tenascin-C [136]. The coor-
dinated expression of MMP-2 and MMP-9 is associated 
with distinct phases of the muscle degeneration and 
regeneration process. MMP-9 has been found to play a 
role in the activation of MSCs and the initiation of the 
inflammatory response, whereas MMP-2 activation has 
been associated with the regeneration of new myofibers 
[148, 149]. Expression of FN is transiently elevated during 

tissue remodeling and is predominant during embryonic 
development [150]. Following muscle injury, there is an 
increase in the expression of Tenascin-C in both injured 
and regenerating SM. This protein is believed to promote 
migration, inhibit premature fusion, and decrease cell 
adhesion [151].

Minor muscle injuries can be repaired by MSC-medi-
ated regeneration, but extensive damage like VML and 
myopathies can lead to permanent reductions in muscle 
mass and function due to impaired regenerative capacity. 
Although cell-based therapies, such as autologous muscle 
transplantation and the injection of ex vivo cultured mus-
cle cells, are promising treatment modalities for severe 
muscle injury and myopathy, their effectiveness is limited 
due to low transplanted cell survival rates [152]. Tissue 
engineering approaches to SM regeneration using ration-
ally designed biomaterials have the potential to overcome 
the limits of conventional therapies [153]. Researchers 
have developed various biomaterials and scaffolds that 
mimic ECM and can be used to stimulate the prolifera-
tion and differentiation of stem cells into muscle cells to 
preserve SM regeneration. These biomaterials and scaf-
folds, which are primarily composed of ECM proteins 
such as COLs, laminins, and FN, can provide a support-
ive environment for stem cells to differentiate into mus-
cle cells and facilitate their integration into host tissue 
[154–156].

ECM scaffolds for SM repair
ECM scaffolds are three-dimensional biodegradable 
structures that mimic natural cellular environments and 
are frequently employed in tissue engineering and regen-
erative medicine to increase cell growth and proliferation 
and new tissue development [157]. ECM scaffolds have 
been used to promote SM repair due to their natural abil-
ity to facilitate cell infiltration and matrix remodeling, 
which are necessary for tissue regeneration [158]. Vari-
ous ECM components, including as purified COLs, FN, 
fibrin, laminin, hyaluronic acid, and others, have been 
employed in the development of scaffolds. Scaffolds con-
structed from purified COL-1 are widely used as pure 
ECM components and have been approved by the FDA 
for several therapeutic applications [159].

Decellularized ECM Scaffolds
Decellularized extracellular matrix (dECM) scaffolds are 
biomaterials derived from human or animal tissues or 
organs after removing immunogenic cellular components 
using decellularization techniques and have emerged as 
a promising scaffold type in the SM tissue engineering 
field [160, 161]. dECM refers to the removal of cellular 
components from ECM to leave behind a water-insoluble 
matrix. dECM scaffolds closely resemble native tissue 
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environments and promote tissue healing more than 
standard biomaterials, which makes them an appeal-
ing option for SM tissue engineering [162]. In surgical 
practice and regenerative medicine, the biocompatibility, 
biodegradability, and bioinductivity of dECM are critical 
considerations. Although dECM can be obtained from 
various organs and tissues, it is most typically derived 
from bone, breast, skin, or bladder. Furthermore, the uti-
lization of whole organ decellularization to produce scaf-
folds for regenerating functional organs after cell loading 
has gained popularity recently [163–165].

The main components of dECM are COL, elastin, FN, 
laminin, and matricellular proteins. dECM scaffolds are 
classified into autogenous, allogeneic, and xenogeneic 
types based on their origins. Because tissue availability 
is limited and autogenous dECM scaffolds often present 
surgical challenges, allogeneic or xenogeneic donor tis-
sues are commonly utilized to produce dECM scaffolds. 
On the other hand, the use of allogeneic or xenogeneic 
dECM scaffolds may result in donor site morbidity and 
differences in architecture and mass composition. Incom-
plete decellularization may also cause immunogenicity 
issues for dECM scaffolds [161, 166].

Biomimetic scaffolds for SM regeneration
In the recent era of muscle regeneration, particularly for 
severe muscle loss or VML therapy, research has focused 
on the use of suitable biomaterials as templates to guide 
tissue reorganization and provide optimum micro-envi-
ronments for cells [14]. Biomimetic scaffolds have the 
potential to increase SM regeneration by providing a 
framework for stem cell proliferation and differentiation, 
stimulating the development of new blood vessels, and 
integrating new and existing tissues [167]. This strategy 
has the potential to address the limits of the body’s inher-
ent ability to rebuild muscle tissues, and researchers are 
creating scaffold-based solutions to boost the body’s abil-
ity to mend and regenerate injured SM tissues using the 
principles of biomimicry. The following are some of the 
most commonly used ECM scaffolds for muscle regen-
eration and tissue engineering.

Hydrogel‑based scaffolds
Hydrogels are made up of 3D networks that absorb a lot 
of water without dissolving in an aqueous media. This 
fundamental property of hydrogels promotes scientific 
study interest in a dominant path in extending their 
potential in a variety of sectors [168]. Naturally, hydrogels 
are suitable candidates for in  vivo applications because 
they have low inflammatory responses, are composed of 
structural components similar to those found in the body, 
and are effective at initiating SM regeneration [169, 170]. 
The materials explored for SM tissue engineering include 

COL, gelatin, fibrin, Matrigel, keratin, hyaluronic acid, 
silk, and alginate-based hydrogels [171, 172]. Synthetic 
hydrogels are less favored for SM tissue formation than 
natural polymer-based hydrogels. However, synthetic 
polymer-based hydrogels can be designed to enable the 
controlled release of GFs to stimulate muscle regenera-
tion. The main limitations of these hydrogels are low cell 
adhesion (as compared with natural hydrogels) and the 
risk of foreign body reactions due to the polymer used or 
its degradation products [173, 174].

Nanofibers
Polymeric nanofibers are excellent vehicles for the release 
of bioactive chemicals and substances, such as GFs, 
medicines, herbal extracts, and gene sequences, due to 
their high surface-to-volume ratios [175]. Nanofibers are 
employed in various biomedical applications, including 
tissue engineering, medical implants, antimicrobial bar-
riers, and wound dressings [176]. Cagla Eren Cimenci 
et  al. reported that laminin-mimetic peptide nanofibers 
promoted the activation of MSCs and their myogenic dif-
ferentiation in vivo and that therapy using these nanofib-
ers increased SM regeneration by boosting satellite cell 
recruitment and muscle fiber expansion [177].

Electroconductive scaffolds
By providing physical and electrical support for the 
growth of new muscle tissue, electroconductive scaf-
folds have the potential to improve the outcomes of mus-
cle regeneration therapies [178]. Electrical impulses are 
generated by motor neurons and cause voluntary mus-
cle contractions. To support the growth of new muscle 
tissue, these impulses must be generated by applying 
an external source to electrically conductive scaffolds 
in  vitro. Electrical stimulation of cells seeded on con-
ductive scaffolds made of polyurethane-carbon nano-
tubes, for example, has been demonstrated to promote 
the adhesion and differentiation of C2C12 cells and 
stimulate the production of myotubes [179]. Selva Bilge 
et al. created aligned, 3D-printed, electrically active scaf-
folds using a carbonaceous material (CM) produced by 
the hydrothermal carbonization of an algae-based bio-
mass. During in vitro culture, scaffolds were seeded with 
C2C12 mouse myoblasts, and electrical stimulation was 
applied. The authors found that electrical stimulation 
resulted in more myotube production and that hydro-
thermal carbonization accelerated myotube maturity 
[180]. Xiaoyan Tang et  al. reported the fabrication of a 
novel stimulus-responsive conducting polymer scaffold 
that regulated muscle cell adhesion, proliferation, and 
differentiation [181]. These biomimetic platforms for SM 
regeneration hold much promise for the future.
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3D graphene scaffolds
Because of their unique interactions with proteins and 
molecules, graphene-based materials (GBMs) have been 
investigated for various biomedical applications. The sur-
face area and chemistry of GBMs result in strong protein 
adsorptions that can mediate interactions between deliv-
ered medicines and bacteria or host cells [182, 183]. Scaf-
folds for SM regeneration must have specific properties 
that direct myocyte fusion with multinucleated myotubes 
and induce vascularization and innervation. Further-
more, when the regenerated tissue is established, materi-
als must decay in a biocompatible manner [8].

Limitations of ECM scaffolds for SM repair
Despite the advantages of ECM scaffolds, such as their 
ability to induce constructive remodeling of injured tis-
sues, their efficacy in restoring SM structure and func-
tion following injury is limited by inherent limitations 
[159]. One of the main challenges associated with the 
utilization of different biological scaffolds, particularly 
those derived from dECM components, is the inadequate 
alignment of regenerating tissue with pre-existing healthy 
tissue. Although the use of dECM materials has demon-
strated notable advancements in addressing VML defi-
ciencies, achieving seamless integration between newly 
generated tissue and pre-existing healthy tissue continues 
to be an ongoing obstacle [14].

Natural scaffolds outperform typical synthetic materi-
als in terms of promoting tissue regeneration, notwith-
standing their intrinsic bioactivity. In contrast, the ability 
to achieve consistent cellular alignment is lacking when 
large-scale scaffolds are generated using uncontrolled 
protein polymerization methods. This disparity compli-
cates achieving full SM recovery because it necessitates 
extensive regeneration at both the functional and struc-
tural levels [8]. To fully harness the therapeutic capabili-
ties of ECM scaffolds, extensive research is required to 
devise novel scaffolding technologies that surpass cur-
rent limitations and facilitate the advancement of more 
effective strategies for muscle repair and regeneration.

Concluding remarks
Muscle regeneration and myogenesis are intricate pro-
cesses that involve the coordinated collaboration of 
various stem cell populations and ECM components. 
By gaining a deeper understanding of this complex-
ity, more precise interventions that aid and amplify 
the innate capacity of the body to regenerate injured 
SM tissue can be devised. To more fully comprehend 
the potential of stem cell transplantation for muscle 
regeneration, it is important to identify mechanisms 
responsible for better muscle repair and function and 

to understand the regulatory processes that govern 
the differentiation of diverse stem cell types, includ-
ing satellite and non-satellite cells, during muscle 
regeneration.

Extensive muscle damage like VML and myopathies 
can lead to permanent reductions in muscle mass and 
function due to impaired regenerative capacity. Tissue 
engineering has advanced significantly over the last 
decade and is expected to provide therapies for SM 
regeneration. Biomaterials are required that address 
the current limitations of conventional therapies, and 
biomaterials and scaffolds typically composed of ECM 
proteins, such as COL, laminin, and FN, that mimic 
natural ECM, have been shown to support the growth 
and differentiation of stem cells into muscle cells. In 
addition, novel technologies are needed to boost bio-
material properties and improve stem cell-mediated 
and ECM-supported muscle regeneration therapies. 
This review offers an overview of the muscle regenera-
tion process and highlights the importance of ECM in 
the search for innovative biomaterials for tissue engi-
neering. In addition, we hope this review encourages 
the development of more effective muscle repair and 
regeneration strategies, advances the field of muscle 
regeneration, and improves the quality of life of those 
suffering from muscle injuries and disorders.
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