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Dissecting cellular senescence and SASP
in Drosophila

Takao Ito and Tatsushi Igaki*
Abstract

Cellular senescence can act as both tumor suppressor and tumor promoter depending on the cellular contexts. On
one hand, premature senescence has been considered as an innate host defense mechanism against carcinogenesis in
mammals. In response to various stresses including oxidative stress, DNA damage, and oncogenic stress, suffered cells
undergo irreversible cell cycle arrest, leading to tumor suppression. On the other hand, recent studies in mammalian
systems have revealed that senescent cells can drive oncogenesis by secreting diverse proteins such as inflammatory
cytokines, matrix remodeling factors, and growth factors, the phenomenon called senescence-associated secretory
phenotype (SASP). However, the mechanisms by which these contradictory effects regulate tumor growth and
metastasis in vivo have been elusive. Here, we review the recent discovery of cellular senescence in Drosophila and
the mechanisms underlying senescence-mediated tumor regulation dissected by Drosophila genetics.
Background
Cellular senescence has been considered to be a major
defense mechanism against carcinogenesis through the
induction of stable cell cycle arrest [1–6]. Aberrant
oncogene activation such as Ras activation causes vari-
ous stresses including oxidative stress and DNA damage,
thereby leading to the induction of premature senes-
cence independently of telomere emersion [2, 3, 5–18].
This oncogene-induced senescence (OIS) can block
malignant progression of precancerous lesions [5–7, 16].
However, recent studies have indicated that senescent
cells can also contribute to tumor progression via the
release of secretory components such as inflammatory
cytokines, matrix remodeling factors, and growth fac-
tors, which is called the senescence-associated secretory
phenotype (SASP) [19–22]. Thus, cellular senescence
has not only negative effects but also positive effects on
tumor development. Therefore, elucidation of how sen-
escent cells drive both tumor suppression and tumor
progression through cell–cell communications in vivo is
essential if taking into account cellular senescence as a
therapeutic target for cancer.
The genetic mosaic technique available in Drosophila

is a powerful tool to study cell–cell communications
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in vivo [23, 24]. This technique allows us to analyze
in vivo interactions between senescent cells and surround-
ing cells during tumor progression. In this review, we
describe the recent identification of cellular senescence in
Drosophila, as well as the recent advances in our under-
standing of the mechanisms by which senescent cells drive
tumor progression via SASP in Drosophila.
Cellular senescence and SASP in Drosophila
Since the first discovery by Hayflick and Moorhead in
1961 [25], cellular senescence has been widely studied in
mammalian cells. Cellular senescence is known as a step-
wise process from early senescence to full senescence
[26–30]. In an early senescence state, senescent cells
exhibit senescence-associated β-galactosidase (SA-β-gal)
activity [31, 32], elevated expression of cyclin-dependent
kinase (CDK) inhibitors such as p16 [12, 33, 34] and p21
[12, 35–37], reversible cell cycle arrest, senescence-
associated heterochromatic foci (SAHF) [38–41], and cel-
lular hypertrophy [31]. When matured to a full senescence
state, senescent cells exhibit additional phenotypes includ-
ing irreversible cell cycle arrest and SASP. Despite the ex-
tensive studies of cellular senescence in vertebrate models,
there has been no evidence that cellular senescence also
occurs in invertebrates.
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Using Drosophila genetics, it has recently been shown
that the state of full senescence can be induced by
simultaneous activation of the Ras oncogene and mito-
chondrial dysfunction in Drosophila imaginal epithelium
[42, 43]. Clones of cells with Ras activation and dys-
function of the mitochondrial electron transport chain
(RasV12/mito−/− clones), both of which are frequently ob-
served in various types of human cancers [44–48], show
elevated SA-β-gal activity, cell cycle arrest accompanied
with upregulation of the Cdk inhibitor Dacapo (a
Drosophila p21/p27 homologue), SAHF, and cellular
hypertrophy [42]. In addition, RasV12/mito−/− cells present
SASP, as these cells excessively secrete the inflammatory
cytokine Unpaired (Upd; a Drosophila interleukin 6 (IL-6)
homologue [49]) and matrix metalloprotease 1 (Mmp1;
the Drosophila secreted Mmp [50]), thereby causing
non-autonomous overgrowth of neighboring cells (Fig. 1)
[42, 43]. IL-6 and Mmp are known as SASP factors in
mammals [21]. Intriguingly, clones of cells with Ras
activation alone (RasV12 clones) show elevated SA-β-gal
activity, Dacapo upregulation, SAHF, and cellular hyper-
trophy but not cell cycle arrest and SASP [42]. Thus, Ras
activation alone is insufficient for the induction of full sen-
escence in Drosophila imaginal epithelium. Accordingly,
mitochondrial dysfunction seems to be crucial for the
acceleration of Ras-mediated OIS. These findings indicate
that cellular senescence and SASP are evolutionally
conserved in invertebrates and that studies in Drosophila
could provide novel mechanistic insights into these
phenomena.
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Fig. 1 Senescent RasV12/mito−/− cells trigger non-autonomous overgrowth
induce non-autonomous overgrowth of surrounding normal cells. b RasV12
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Regulation of cell cycle arrest in Drosophila
senescent cells
DNA damage is known to be the major cause of cellular
senescence [1, 51]. Studies in mammalian systems have in-
dicated that Ras activation elicits DNA damage mainly
through DNA hyper-replication [3, 10] and production of
reactive oxygen species (ROS) [13, 51–55]. It has also been
well established that the ROS-induced DNA damage
triggers cellular senescence. Intriguingly, in Drosophila im-
aginal epithelium, Ras activation and dysfunction of the
mitochondrial respiratory chain synergize in inducing ROS
production and DNA damage [42, 43]. RasV12/mito−/− cells
show much larger amount of ROS production and DNA
damage than RasV12 cells or mito−/− cells. A recent study in
human cell cultures has indicated that RasV12 cells show el-
evated mitochondrial respiration via enhanced conversion
of pyruvate to acetyl-CoA that is the origin of mitochon-
drial tricarboxylic acid (TCA) cycle [56]. Therefore, when
the mitochondrial electron transport is downregulated in
RasV12 cells, large amounts of metabolic intermediates in
mitochondrial respiration may be accumulated in mito-
chondria, which could affect ROS production.
It has been shown in mammals that DNA damage

triggers cell cycle arrest and thereby induces cellular
senescence [1, 51]. Upon DNA damage, p53 and p16 are
upregulated [57–61] and thereby activating the p53/p21/
Rb pathway [35, 36, 62, 63] and the p16/Rb pathway
[62, 64]. DNA damage stabilizes p53 protein by re-
pressing the ubiquitin ligase Mdm2 [57–59]. p53 directly
activates transcription of p21 [35]. Both p21 and p16
b
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positively regulate the function of retinoblastoma 1 (Rb1),
a cell cycle keeper, by repressing the activities of CDKs.
p21 represses the activity of the Cyclin E-CDK2 complex,
while p16 represses the activity of the Cyclin D-CDK4-
CDK6 complex, leading to the induction of cell cycle ar-
rest. Intriguingly, the mechanism regulating expression of
Cdk inhibitors during cellular senescence in Drosophila
seems to be distinct from mammals in three ways. First,
DNA damage is not involved in stabilization of Drosophila
p53 (dp53) protein [42, 65]. Drosophila RasV12/mito−/−

cells, in which huge amount of ROS production and DNA
damage occur, present larger elevation of dp53 than
RasV12 cells or mito−/− cells [42]. Nonetheless, this dp53
elevation is not blocked by suppression of ROS produc-
tion, suggesting that dp53 protein level is not affected by
oxidative DNA damage. Indeed, it has been reported that
ionizing radiation (IR)-induced DNA damage does not
change dp53 protein level, but it activates dp53 function
via Loki (a Chk2 homologue)-dependent phosphorylation
[65]. Similarly to mammalian Chk2, Loki acts as a kinase
downstream of DNA damage-responsive kinases Tefu
(an ATM homologue) and Mei-41 (an ATR homologue)
[66, 67]. Thus, an alternative mechanism, not DNA dam-
age, may stabilize dp53 protein, while DNA damage acti-
vates dp53 function. Second, dp53 does not regulate
expression of Drosophila p21/p27, Dacapo [65, 68]. Loss
of the dp53 gene in RasV12/mito−/− cells does not block
elevation of Dacapo (our unpublished data), which is
consistent with previous reports indicating that dp53 does
not participate in the regulation of Dacapo expression
[65, 68]. Meanwhile, it has been shown that the expres-
sion level of Dacapo in RasV12 cells is comparable with
that in RasV12/mito−/− cells but is much higher than that
in mito−/− cells [42]. These observations indicate that
Dacapo expression is dependent on Ras function but not
dp53 function. In fact, previous studies have indicated that
dp53 has a much closer relationship with apoptosis than
cell cycle arrest [65, 69–72]. Finally, p16, another CDK in-
hibitor crucial for the induction of cellular senescence in
mammals, is not conserved in Drosophila. Collectively,
RasV12-induced Dacapo elevation seems to be the central
event triggering cell cycle arrest during cellular senescence
in Drosophila.
The mechanism by which p53 regulates cyclin E

protein stability, however, is conserved in Drosophila. It
has been reported that dp53 induces ubiquitin-mediated
proteolysis of cyclin E by activating gene expression of
an E3 ubiquitin ligase Archipelago (Ago; a Fbxw7
homologue) [73–75]. It is known that gene transcription
of mammalian Fbxw7 is positively regulated by p53 and
that Fbxw7 leads to degradation of cyclin E through its
ubiquitin ligase activity [76–78]. Together, these ob-
servations suggest that RasV12-induced Dacapo upre-
gulation and dp53-induced cyclin E degradation may
cooperatively drive rigid cell cycle arrest in RasV12/
mito−/− cells in Drosophila.

Roles of JNK and Hippo signaling in SASP
The c-Jun N-terminal kinase (JNK) pathway is a kinase
cascade that mediates stress signaling such as oxidative
stress and DNA damage [79–83]. Drosophila RasV12/
mito−/− senescent cells show much higher Drosophila
JNK (dJNK; a JNK 1/2/3 homologue) activity than RasV12

cells or mito−/− cells, and this dJNK activation is blocked
by ROS inhibition [43]. Intriguingly, prominent activation
of dJNK in RasV12/mito−/− cells is achieved by cell cycle
arrest [42]. Cyclin E overexpression in RasV12/mito−/− cells
inhibits dJNK activation without affecting ROS production
[42]. In addition, Ras activation, which causes a weak in-
duction of ROS, and loss of cyclin E synergistically trigger
excessive activation of dJNK [42, 43]. Ras activation alone
slightly increases dJNK activity, while loss of cyclin E alone
is insufficient for the induction of dJNK activation. These
observations suggest that cell cycle arrest can amplify
dJNK activity without changing ROS level. Furthermore,
dJNK activation can induce cell cycle arrest [42], which is
consistent with a previous report showing that JNK1 stabi-
lizes p21 protein via phosphorylation in a human colon
cancer cell line [84]. Taken together, these data suggest
the existence of a positive feedback loop between dJNK
signaling and cell cycle arrest in RasV12/mito−/− cells, and
this loop and oxidative DNA damage may act synergistic-
ally to induce excessive activation of dJNK.
Previous reports have suggested a close link between

JNK signaling and SASP. SASP is considered to be regu-
lated by NF-κB signaling and epigenetic mechanisms in
mammals. NF-κB signaling positively regulates SASP
during cellular senescence downstream of Ras signaling
[85–89]. Epigenetic mechanisms, such as chromatin re-
modeling, histone modification, and microRNA, also affect
SASP [30, 90–94]. On the other hand, JNK has been shown
to regulate expression of SASP factors including matrix re-
modeling factors and inflammatory cytokines both in mam-
mals and Drosophila. As for matrix remodeling factors,
mammalian JNK induces expression of Mmps via tran-
scription factor activator protein-1 (AP-1) family [95–100],
while dJNK induces Mmp1 elevation via Drosophila Fos
(dFos), an AP-1 family member [101–103]. As for inflam-
matory cytokines, mammalian JNK induces elevation
of IL-6 [104–106], IL-8 [107, 108], and monocyte
chemoattractant protein-1 (MCP-1) [109–111], while
dJNK induces elevation of Upd (an IL-6 homologue)
[101, 112, 113]. In Drosophila RasV12/mito−/− cells,
dJNK upregulates Upd via inactivation of the Hippo
pathway [42, 43]. The Hippo pathway is an evolutionally
conserved tumor suppressor signaling that regulates cell
proliferation and cell death [114, 115]. In mammals, Mst1/2
and Lats1/2, the core components of the Hippo pathway,



Fig. 2 Scheme of the underlying mechanisms driving cellular
senescence and SASP in Drosophila RasV12/mito−/− cells
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repress the Hippo effectors Yap1/2 and Taz via phosphor-
ylation [114, 116–120]. Similarly, in Drosophila, Hippo (a
Mst1/2 homologue) and Warts (a Lats1/2 homologue) in-
activate Yorkie (Yki; a Yap1 homologue) via phosphoryl-
ation [114, 116, 120–124]. Recent studies have reported
that the Hippo pathway negatively regulates expression of
SASP factors including IL-6 in mammals [125–128], simi-
larly to Drosophila cells [129–132]. Marked upregulation
of Upd in Drosophila RasV12/mito−/− cells is blocked by
expression of a dominant negative form of dJNK, cyclin E,
Warts, or RNAi-mediated knockdown of Yki [42, 43]. Fur-
thermore, it has been shown that dJNK signaling and Ras
signaling cooperatively inactivate the Hippo pathway,
thereby inducing SASP. Recent studies in Drosophila and
human cell cultures have shown that JNK signaling and
Ras signaling act synergistically to inhibit the Hippo path-
way via Ajuba LIM protein (Jub)/Ajuba family proteins,
which are known as Warts/LATS inhibitors [133–138].
Thus, Jub/Ajuba family proteins may also act as key regu-
lators of SASP during cellular senescence. These findings
indicate the importance of JNK signaling in the induction
of SASP.

Senescence or apoptosis?
Apart from cellular senescence, apoptosis also acts as a
major defense mechanism against tumorigenesis [139].
Apoptosis is an active cell death program executed by
killer proteases called caspases [140–142]. Are there any
functional relationships between cellular senescence and
apoptosis? Studies in Drosophila have indicated that Ras
signaling negatively regulates the function of the pro-
apoptotic protein head involution defective (Hid) both
transcriptionally and post-transcriptionally, thereby sup-
pressing apoptosis [143, 144]. Interestingly, senescent
RasV12/mito−/− cells seem to exhibit apoptosis resistance
[42, 43]. On the other hand, in mammals, Ras signaling
not only induces cellular senescence but also suppresses
apoptosis [145, 146]. Interestingly, it has also been
shown in mammals that senescent cells have the resist-
ance to apoptosis [147–150]. Conversely, apoptosis
inhibition by the pan-caspase inhibitor accelerates the
anticancer agent-induced senescence in human culture
cells, suggesting that apoptotic signaling antagonizes
cellular senescence [151]. Therefore, two major tumor-
suppressive machineries, cellular senescence and apop-
tosis, seem to counteract each other. Future studies on
common signaling involved in both cellular senescence
and apoptosis would increase our understanding of how
these machineries cooperatively regulate tumorigenesis.

Conclusions
Recent studies in Drosophila have revealed that cellular
senescence and SASP exist in invertebrates and that Ras
activation and mitochondrial dysfunction synergistically
drive cellular senescence and SASP via complex mecha-
nisms mediated by JNK and Hippo signaling (Fig. 2).
These findings have opened a new direction of the re-
search field of cellular senescence. Future studies taking
advantages of the powerful genetics of Drosophila would
provide novel insights into cellular senescence and SASP,
as well as new therapeutic strategies against cancers.
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