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Abstract

Coronavirus disease of 2019 (COVID-19), which originated in China in 2019, shows mild cold and pneumonia
symptoms that can occasionally worsen and result in deaths. SARS-CoV-2 was reported to be the causative agent of
the disease and was identified as being similar to SARS-CoV, a causative agent of SARS in 2003. In this review, we
described the phylogeny of SARS-CoV-2, covering various related studies, in particular, focusing on viruses obtained
from horseshoe bats and pangolins that belong to Sarbecovirus, a subgenus of Betacoronavirus. We also describe
the virological characteristics of SARS-CoV-2 and compare them with other coronaviruses. More than 30,000
genome sequences of SARS-CoV-2 are available in the GISAID database as of May 28, 2020. Using the genome
sequence data of closely related viruses, the genomic characteristics and evolution of SARS-CoV-2 were extensively
studied. However, given the global prevalence of COVID-19 and the large number of associated deaths, further
computational and experimental virological analyses are required to fully characterize SARS-CoV-2.
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Background

On December 12, 2019, an epidemic of acute respiratory
syndrome in humans started in the city of Wuhan,
Hubei province, central China [1-4]. The causative
agent of the symptom was found to be a novel corona-
virus (CoV), of which genome is phylogenetically similar
to that of the severe acute respiratory syndrome (SARS)
CoV (SARS-CoV) [1-4]. Because of that, World Health
Organization (WHO) named the symptoms coronavirus
disease 19 (COVID-19) [5], and the Coronaviridae Study
Group of the International Committee on Taxonomy of
Viruses (ICTV) named the novel CoV as SARS-CoV-2
[6]. In this review, we noted characteristics of SARS-
CoV-2 compared to those of other CoVs.
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Main text

Phylogeny of SARS-CoV-2

SARS-CoV-2 is a member of the coronavirus family
(Coronaviridae). The family Coronaviridae is a relatively
large family that includes a variety of viral species. The
coronavirus family is divided into two subfamilies:
Letovirinae and Orthocoronavirinae [7]. SARS-CoV-2 is
classified as an orthocoronavirus subfamily member. The
orthocoronavirus subfamily is further divided into four
genera: Alphacoronavirus, Betacoronavirus, Gammacorona-
virus, and Deltacoronavirus [7]. In addition, the genus Beta-
coronavirus is reported to be divided into five subgenera:
Sarbecovirus, Hibecovirus, Nobecovirus, Merbecovirus, and
Embecovirus [7, 8].

The maximum likelihood (ML) tree based on amino
acid sequences of open reading frame lab (ORFlab) indi-
cated the phylogenetic relationship of various CoVs shown
in Fig. 1. The phylogenetic tree was constructed from 61
viruses belonging to the orthocoronavirus subfamily. More
than 100 CoVs were isolated from various mammalian
and avian species, and the CoVs shown in Fig. 1 are repre-
sentatives selected by the authors to illustrate diversity of
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Fig. 1 Phylogeny of orthocoronaviruses. Maximum likelihood (ML)-based phylogenetic tree of 61 orthocoronaviruses. Partial amino acid

sequences of ORF1ab were used for the analysis. We generated the multiple alignment of the sequences using L-INS-i of MAFFT version 7.453 [9],

and the amino acid substitution model LG+I+G was selected using ProtTest3 [10]. Based on the model, we constructed an ML tree using RAXML-

NG [11] applying 1000 bootstrapping tests. GenBank or GISAID (that was indicated by asterisk (¥)) accession number, strain name, and host of

each virus are indicated for each branch terminal. CoVs obtained from humans or bats are shown in red or blue, respectively. A black or open

circle corresponds to bootstrap values = 95% or = 80%, respectively. The scale is shown in the upper left
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CoVs, of which complete genomes are available in public
databases excluding an unclassified coronavirus found in
Tropidophorus sinicus (Chinese waterside skink). The
Guangdong Chinese water skink CoV was used as an out-
group in Fig. 1, which was the only CoV found in reptiles
other than mammals and birds [12]. SARS-CoV-2, along
with SARS-CoV and Middle East respiratory syndrome
(MERS)-CoV, is classified in the genus Betacoronavirus.
SARS-CoV-2 and SARS-CoV belong to the subgenus
Sarbecovirus, accompanying various CoVs found in bats,
in particular from horseshoe bats (genus Rhinolophus).

In addition to SARS-CoV-2, SARS-CoV, and MERS-
CoV, there are four other CoVs that cause common
cold symptoms in humans: human CoV (HCoV) HKU1
and HCoV OC43, belonging to the genus Betacoronavirus,
and HCoV 229E and HCoV NL63, belonging to the
Alphacoronavirus. Although there are few reported cases,
human enteric coronaviruses (HECV) that cause diarrhea
in humans belong to the Betacoronavirus genus. Viruses
closely related to HCoV HKUI are present in rodents, and
HECYV is closely related to CoVs isolated from even-toed
animals (bovine and deer). These data indicate that these
HCoVs were derived from CoVs of domestic animals and
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small animals such as rodents. There are multiple types of
CoVs in non-human animals, and it is undeniable that
coronaviral transmissions from domestic, companion, and
wild animals to humans might have occurred many times
without people realizing it.

The phylogenetic relationship of SARS-CoV-2 with
other closely related CoVs belonging to subgenus
Sarbecovirus is illustrated in Fig. 2. Note that entire
genomic sequences were used for this phylogenetic
analysis. CoVs which are the most closely related to
the SARS-CoV-2 are Bat CoVs, in particular strains
RmYNO2 [14] and RaTG13 [4], both of which are iso-
lated from horseshoe bats (genus Rhinolophus). Fur-
ther, CoVs found in Malaysian pangolins are the next
closest to SARS-CoV-2 as well. These observations
are also indicated by Fig. 1, which is based on partial
amino acid sequences of the ORFlab gene. As shown
in the Fig. 2, most of the CoVs belonging to sub-
genus Sarbecovirus were found in horseshoe bats or
other bat species. Therefore, although we still do not
know the direct origin of SARS-CoV-2, it is highly
possible that CoV(s) belonging to Sarbecovirus in
horseshoe bats could be the origin of SARS-CoV-2.

0.07

[ 1

NC_045512 | SARS-CoV-2 Wuhan-Hu-1 | human
*EPI_ISL_412977 | Bat CoV RmYNO2 | R.malayanus
MN996532.1 | Bat CoV RaTG13 | R.affinis
*EPI_ISL_410721 | Pangolin CoV (Guangdong) | Manis javanica

*EPI_ISL_410539 | Pangolin CoV P1E | Manis javanica

E MG772933 | Bat SARS-like CoV bat-SL-CoVZC45 | R.sinicus
MG772934 | Bat SARS-like CoV bat-SL-CoVZXC21 | R.sinicus

KF294457 | Bat SARS-like CoV Longquan-140 | R.monoceros
GQ153542 | Bat SARS CoV HKU3-7 | R.sinicus
DQ084200 | Bat SARS CoV HKUS3-3 | R.sinicus

GQ153547 | Bat SARS CoV HKU3-12 | R.sinicus
DQ412043 | Bat SARS CoV Rm1 | R.macrotis
KJ473814 | BtRs-BetaCoV/HuB2013 | R.sinicus
JX993987 | Bat CoV Rp/Shaanxi2011 | R.pusillus
KJ473811 | BtRf-BetaCoV/JL2012 | R.ferrumequinum
KY938558 | Bat CoV 16BO133 | R.ferrumequinum
DQ412042 | Bat SARS CoV Rf1 | R.ferrumequinum
KJ473813 | BtRf-BetaCoV/SX2013 | R.ferrumequinum
KY770860 | Bat CoV Jiyuan-84 | R.ferrumequinum
MK211374 | CoV BtRI-BetaCoV/SC2018 | Rhinolophus sp.
JX993988 | Bat CoV Cp/Yunnan2011 | Chaerephon plicata
KF569996 | Rhinolophus affinis CoV LYRa11 | R.affinis
KJ473815 | BtRs-BetaCoV/GX2013 | R.sinicus
DQO071615 | Bat SARS CoV Rp3 | R.pearsoni
KY417148 | Bat SARS-like CoV Rs4247 | R.sinicus
Q KY417142 | Bat SARS-like CoV As6526 | Aselliscus stoliczkanus
MK211377 | CoV BtRs-BetaCoV/YN2018C | R.affinis
FJ588686 | SARS CoV Rs672/2006 | R.sinicus
_EKY417143 | Bat SARS-like CoV Rs4081 | R.sinicus
KP886808 | Bat SARS-like CoV YNLF_31C | R.ferrumequinum
KU973692 | SARS-related CoV F46 | R.pusillus
KY417145 | Bat SARS-like CoV Rf4092 | R.ferrumequinum
KY770858 | Bat CoV Anlong-103 | R.sinicus
KJ473816 | BtRs-BetaCoV/YN2013 | R.sinicus
KY417144 | Bat SARS-like CoV Rs4084 | R.sinicus
KY417152 | Bat SARS-like CoV Rs9401 | R.sinicus
KY417150 | Bat SARS-like CoV Rs4874 | R.sinicus
AY572034 | SARS-CoV civet007 | Paguma larvata (civet)
NC_004718 | SARS-CoV Tor2 | human

L NC_014470 | Bat CoV BM48-31/BGR/2008 | R.blasii

Fig. 2 Phylogeny of CoVs belonging to Sarbecoronavirus. ML-based phylogenetic tree of 41 CoVs belonging to Sarbecoronavirus including SARS-
CoV-2. Whole genome sequences were used for the analysis. We generated the multiple alignment of the sequences using L-INS-i of MAFFT
version 7453 [9], and the nucleotide substitution model GTR+I+G was selected using ModelTest-NG [13]. Based on the model, we constructed an
ML tree using RAXML-NG [11], applying 1000 bootstrapping tests. Please see Fig. 1 legend for the details of this figure

KY352407 | SARS-related CoV BtKY72 | Rhinolophus sp.
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Phenotypic features and genomic structures of SARS-CoV-2 ~ ORF1b). ORFla and ORF1b encode 11 and 5 non-
The phenotypic features of CoVs are as follows. The structural proteins: nspl to nspll and nspl2 to 16, re-
viral particles are spherical, 100 to 120 nm in diam-  spectively. ORFla is translated directly from the genomic
eter, with envelopes derived from the host cell mem- RNA; however, expression of ORF1b requires a — 1 ribo-
brane. CoVs were named “coronaviruses” because somal frameshift near the end of ORFI, resulting in a sin-
they are characterized by spike protein projections on  gle ORFlab polypeptide. Downstream from the ORFlab,
the surface of the viral particles (about 20nm in there are ORFs encoding a few to more than ten struc-
length), and their shape resembles a crown (corona) tural/non-structural proteins. The common structural
under electron microscopy. Those features are em-  proteins of CoV subfamily viruses are nucleocapsid (N),
bodied in SARS-CoV-2 [1]. spike (S), membrane (M), and envelope (E) proteins. The

The genome structure of CoVs is a non-segmented, S protein is responsible for both binding to receptors
positive-sense single-stranded RNA (+ssRNA). The gen-  expressed on the cell membranes of susceptible cells and
ome size ranges from 27 to 32 kb: a cap structure at the = membrane fusion. The M and E proteins are involved in
5" end followed by a reader sequence of about 70 bases, the assembly and budding of viral particles. CoVs also
several ORFs coding various proteins, and a non- code various non-structural proteins in ORFlab as well as
translated region including a poly-A sequence at the 3’  in other ORFs, in particular near the 3” end, although the
end. Figure 3 shows the genomic structure of SARS-  details of the exact genes in the SARS-CoV-2 genome are
CoV-2 (29.9kb). For the ORFs from the 5" end, a region  still unclear mainly due to overlapping genes encoded in a
of about 20 kb corresponds to the two ORFs (ORFla and different coding frame as illustrated in Fig. 3.

0 ? 1|O 1|5 2|0 2|5 kilo bases
| | | | |

ORF1a (4,400aa)

ORF1b (2,695aa)
s (1,273aa) ||
ORF3a (275aa)| |
ORF3c (41aa)|
ORF3b (22aa)
E (75aa)|
M (222aa)fj
ORF6 (61aa)|
ORF7a (121aa) |
ORF7b (43aa)|
ORF8 (121aa)||
N (419aa) ||
ORF9b (90aa)|
ORF14 (73aa)
ORF10 (38aa)|

Fig. 3 Genomic structure of SARS-CoV-2. Schematic genomic structure of SARS-CoV-2 was shown based on the SARS-CoV-2 Wuhan-Hu-1 (NCBI
Reference Sequence ID: NC_045512.2). The scale was shown on the top. Each ORF was illustrated based on the NCBI annotation of NC_045512.2,
and a rectangle filled with black corresponds to a structural protein. The number in parentheses is the length of amino acid sequence (aa, amino
acid). A gene name as well as rectangle colored in light blue was a hypothetical ORF which is not annotated NC_045512.2 currently. ORF3b is
based on Konno et al. [15], and the others are based on Davidson et al. [16] and Jungreis et al. [17]




Nakagawa and Miyazawa Inflammation and Regeneration

The SARS-CoV-2 genome shares nucleotide identity
to the genomes of Bat CoV RaTG13 (96%) [4], Bat CoV
RmYNO2 (93%) [14], Pangolin CoV (90%) [18-20],
SARS-CoV (80%) [4], and MERS-CoV belonging to Mer-
becovirus (50%) [21]. However, the nucleotide identity
varied greatly depending on genes as well as genomic
loci [4, 14, 18-22]. For example, the receptor-binding
domain of S genes of SARS-CoV-2 is very similar to that
of Pangolin CoVs, rather than those of Bat CoVs
RaTG13 and RmYNO2 [14, 18], while a polybasic (furin)
cleavage site, which is one of the prominent features of
SARS-CoV-2 [23, 24], was found only in Bat CoV
RmYNO02 among CoVs belonging to the subgenus Sarbe-
covirus [14]. ORFlab of SARS-CoV-2 is quite similar to
that of Bat CoV RmYNO2 rather than that of RaTG13
[14]. Those complex genomic features could be a conse-
quence of inter-viral recombination [25]. With respect
to the differences in each gene of Sarbecovirus, it was re-
ported that ORF3b differs greatly in length among vi-
ruses belonging to the Sarbecovirus genus, including
SARS-CoV-2 and SARS-CoV, and that these differences
could contribute to differences in the anti-interferon ac-
tivity [15]. Moreover, it was found that there are SARS-
CoV-2 variants showing a longer ORF3b, which were
isolated from two patients with severe diseases [15]. This
observation may indicate an increased the ability of the
longer ORF3b to suppress interferon induction in those
patients.

Genome sequencing data analyses of SARS-CoV-2

SARS-CoV-2 information including genome sequencing
data was collected in a database called GISAID (Global Ini-
tiative on Sharing All Influenza Data, https://www.gisaid.
org) [26], which shares sequence data on potentially pan-
demic infectious viruses, as well as methods for sequencing
and relevant geographic and clinical information. The
GISAID database includes sequencing data that are not
available in public nucleotide databases such as GenBank.
As the name implies, this database was constructed at the
time of the influenza A HIN1 2009 pandemic, but it covers
SARS-CoV-2 in view of urgency. In the GISAID database,
not only SARS-CoV-2 but also highly similar viral se-
quences such as CoVs isolated from bats and pangolins
have been collected. Based on the viral sequences as well
as geographical and sample collection information in the
GISAID database, Nextstrain (https://nextstrain.org) [27]
shares phylogenetic, geographical, and genomic analyses of
SARS-CoV-2, illustrating the real-time evolution of SARS-
CoV-2. Note that Nextstrain has been used to analyze the
phylogeny of not only SARS-CoV-2 but also other patho-
genic viruses that can potentially pose a public health
threat. At the time of writing this article (May 28, 2020),
30,699 SARS-CoV-2 and closely related viral sequences are
stored in the GISAID database, and 4308 SARS-CoV-2
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genomes were analyzed in the Nextstrain. According to
the Nextstrain, the number of substitutions in the SARS-
CoV-2 genome was estimated at approximately 26 substi-
tutions per year. Considering the size of SARS-CoV-2 gen-
ome (29.9kb), the estimated evolutionary rate is
approximately 0.90 x 107> substitution/site/year. The value
of this evolutionary rate is similar when compared to other
previously reported rates of SARS-CoV (0.80-2.38 x 1072,
Zhao et al) [28], MERS-CoV (0.63-1.12 x 10~%) [29-31],
and HCoV OC43 (043 x 1073) [32]. To the best of our
knowledge, the mutation rate (the number of substitutions
per site per replication cycle) of SARS-CoV-2 has not been
examined vyet, but it could be lower than that other RNA
viruses such as influenza viruses because the SARS-CoV-2
genome encodes a proofreading exoribonuclease called
ExoN in nonstructural protein 14 (nsp14) of the ORF1b as
it was reported in SARS-CoV [33].

We know that the evolution of coronaviruses occurs
not only by nucleotide mutations but also by recombin-
ation. In particular, it has been suggested that the feline
infectious peritonitis virus, which causes lethal infectious
peritonitis in cats, was caused by recombination of a fe-
line coronavirus with a canine coronavirus [34]. Further-
more, porcine infectious peritonitis virus transforms into
porcine respiratory coronavirus (PRCV), which causes
respiratory disease when a portion of the S protein is de-
ficient [35]. In murine hepatitis virus (MHV), three
amino acid mutations were found to be associated with
demyelination and hepatitis [36].

No conclusions have been reached as to whether amino
acid mutations are responsible for the difference in SARS-
CoV-2 virulence, although certain nucleotide mutations
are widely spread in the population. Tang et al. reported
that the current coronavirus was divided into two geno-
types (designated L and S) depending on an amino acid
site 84 (S84L) of ORF8 gene [37]. When compared with
closely related CoVs such as Bat CoV RaTG13 and Pango-
lin CoVs, the ancestral type of SARS-CoV-2 was thought
to be S-type [37]. However, the L-type emerged in the be-
ginning of the COVID-19 outbreak, and the current major
type of SARS-CoV-2 widely spreading all over the world is
L-type as of May 21, 2020 (https://nextstrain.org). Zhang
et al. analyzed the clinical and immunological data from
326 confirmed cases of COVID-19 and compared them
with viral genetic variation including the S84L mutation,
but they could not find any association among them [38].
Korber et al. reported a mutation at an amino acid site
614 (D614G) of S protein that is currently dominant in
Europe [39]. Since the S protein is essential in infecting
cells and is a primary target for neutralizing antibodies,
the mutations in the S protein could be related to the viru-
lence; however, this hypothesis should be evaluated ex-
perimentally using reverse genetics. Although more than
5000 mutations accumulated in the SARS-CoV-2
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population [40], there are no shreds of evidence currently
supporting that SARS-CoV-2 genomes are separating into
distinct genotypes during the evolution [41].

Conclusion

Although only about a half year has passed since a gen-
ome sequence of SARS-CoV-2 was shared in the
GISAID database, more than 30,000 genomes are now
available. Using the genome sequence data with closely
related viral genome data, the genomic characteristics
and evolution of SARS-CoV-2 were extensively studied.
However, SARS-CoV-2 is still prevailing around the
world and is causing many deaths. Further viral genomic
and experimental virological analyses are required to
characterize SARS-CoV-2.
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