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Abstract

Background: Inflammatory response is an important characteristic affecting prognosis and therapeutic response
in lower-grade glioma (LGG). However, the molecular subtypes based on inflammatory response are still under
exploitation.

Methods: The RNA sequencing, somatic mutation, and corresponding clinical data from 1205 LGG patients were
obtained from the TCGA, CGGA, and Rembrandt cohorts. Consensus clustering was performed to identify molecular
subtypes associated with inflammation. Prognosis, clinicopathologic features, immune cell infiltration, and somatic
mutation profile were compared among these inflammation-associated subtypes.

Results: Our results demonstrate that LGG could be categorized into inflammation-, low, -mid, and -high subtypes
with distinct clinicopathologic features, prognostic and tumor microenvironment. We established that this catego-
rization was reproducible, as well as predictable. In general, inflammation-high subtype presents a dismal prognosis
with the immunosuppressive microenvironment and high frequency of oncogene mutation. Inversely, inflammation-
low subtype was associated with the most favorable clinical outcomes with the immunoreactive microenvironment
among three subtypes. Moreover, we develop and validate an inflammation-related prognostic model, which shows
strong power for prognosis assessment.

Conclusion: In conclusion, we established a novel glioma classification based on the inflammation subtype. This
classification had significant outcomes for estimating the prognosis, as well as the tumor microenvironment.
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Introduction

Inflammation is an ancient evolved biological process
that combines the activation, recruitment, and activity
of innate and adaptive immune cells [1, 2]. The precise
role of inflammation in the occurrence, progression, and
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therapy of cancer has gained much research interest. It
has been widely established that inflammation may per-
form a substantial function in carcinogenesis at all stages
[3]. Acute inflammation increases cancer cell death by
activating an antitumor immune response, but persistent
inflammation induced by treatment enhances resistance
against treatment and the progression of cancer [4, 5].
In addition, inflammation is associated with the clinical
outcome, especially with immunotherapy, an auspicious
therapeutic strategy for cancer treatment [6].
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Glioma has been identified as the most prevalent pri-
mary malignancy located in the central nervous system,
whose features include unfavorable proliferation as
well as invasion of tumors [7]. The tumor microenvi-
ronments (TME) of grades II and III gliomas vary sig-
nificantly from each other, despite the fact that these
tumors are typically considered as diffuse lower-grade
gliomas (LGGs) in general [8]. The neuroinflammation-
enriched tumor microenvironment is considered as one
of the important defining features of high-grade glioma
and is identified as a significant factor contributing to
the complexity and lethality [9]. The function of inflam-
matory mediators is critical in the establishment of an
immunosuppressed microenvironment, resulting in the
increased proliferation, invasion, and preservation of
high-grade glioma cells’ stemness [10].

Multiple molecular subtypes of glioma have been
identified, with the most notable being IDH mutations
and the 1p/19q deletion [11]. We hypothesized that
molecular subtypes classified by inflammatory response
may also produce distinct clinicopathologic features,
prognostic and tumor microenvironment. This study
aimed to (i) identify molecular subtypes based on
inflammatory response in LGG; (ii) evaluate the prog-
nostic value, antitumor immunity, and tumor micro-
environment associated with these subtypes; and (iii)
construct and validate the inflammation-related prog-
nostic model.

Materials and methods

Datasets

A sum of 509 LGG patients was included in the study, and
their RNA sequencing, somatic mutation, and matching
clinical information were acquired from the TCGA data-
base (https://portal.gdc.cancer.gov/). To serve as a valida-
tion set, comparable data were obtained for the 121 LGG
patients in the Rembrandt cohort (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE108474) and the 575
LGG patients in the CGGA cohort (http://www.cgga.org.
cn/) [12-14]. The clinical information of LGG patients
was provided in the Additional file 1.

Integration of protein-protein interaction (PPI) network

A network for protein-protein interactions was con-
structed utilizing the STRING database. Cytoscape
(https://cytoscape.org/) is a free and open-source soft-
ware platform that is extensively used to visualize sophis-
ticated networks and merge them with any type of
attribute data. A network for PPI was constructed, and
the interaction connections of important genes in inflam-
mation-linked genes were examined utilizing Cytoscape.
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Consensus clustering

Consensus clustering was performed to identify molec-
ular subtypes associated with inflammation via the
“ConcensusClusterPlus” package in R software. Subse-
quently, the optimum cluster numbers between k = 2
and 10 were identified, after which the procedure was
repeated 1000 times to ensure that the findings were
robust and reproducible. A cluster map was created
using the pheatmap function in the R software.

Principal component analysis

In order to examine the transcriptional patterns of the
various inflammatory subtypes, principal component
analysis (PCA) was used. It was necessary to import
the gene names together with the matching sample data
and level of expression. Subsequently, the analysis was
carried out by the “limm” package utilizing the prin-
comp function, and the findings were presented with
the aid of “ggplot2” package in the R software.

Single-sample gene-set enrichment analysis (ssGSEA)

The ssGSEA analysis was used to quantify the inflam-
matory response score of each LGG sample and was
completed using the “GSVA” and “GSEABase” packages
in R. Gene signature for the inflammatory response was
obtained from gene-set enrichment analysis (HALL-
MARK_INFLAMMATORY_RESPONSE), and the gene
list is provided in Additional file 2.

Calculation of the immune cell type fractions

CIBERSORT was used to measure the 22 different types
of immune cells infiltration in each LGG sample. In
the CIBERSORT platform (https://cibersort.stanford.
edu/), a leukocyte gene matrix containing 547 genes
was employed to distinguish 22 immune cells, which
included eosinophils, memory B cells, neutrophils, T
cells CD4 naive, activated mast cells, activated CD4
memory T cells, resting dendritic cells, T cells regula-
tory (Tregs), macrophages: MO, M1, and M2, mono-
cytes, NK cells activated, T cells gamma delta, T cells
follicular helper, NK cells resting, resting CD4 memory
T cells, activated dendritic cells, T cells CD8, resting
mast cells, naive B cells, neutrophils, and plasma cells
[15].

Somatic mutation analysis

TCGA GDC Data Portal was used to obtain “maf”-
formatted somatic mutation data for each LGG sample
(VarScan2 Variant Aggregation and Masking; https://
portal.gdc.cancer.gov). Subsequently, the “Maftools”
function in R software was used to create “waterfall”
charts, which helped to visualize and summarize the
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altered genes of the three LGG subtypes and abnormal
signaling pathways.

Creation of the inflammation prognostic signature
A LASSO cox regression analysis was used to gener-
ate the particular coefficient factors for each correlation
among the inflammatory-related genes that were found
to have significance during the univariable Cox regres-
sion analysis. LASSO is a regression analysis method that
performs both variable selection and regularization to
improve predictive accuracy and the interpretability of
the resulting statistical model. Hence, LASSO cox regres-
sion is an excellent option for the development of prog-
nostic models on the basis of gene expression profiles.
Survminer and survival packages for R were used to
conduct Kaplan-Meier analysis on the survival data
for the high- and low-risk cohorts, and the results were
compared.

The single-cell RNA sequence (scRNA-seq) analysis

In order to examine scRNA-seq data collected from the
GSE70630, the tumor immune single-cell hub (TISCH)
was employed [16]. TISCH is a single-cell RNA-seq data
source that puts an emphasis on th TME and provides spe-
cific annotation of cell types at the single-cell level, allow-
ing for TME investigation across diverse malignancies [17].

Statistical analysis

The survival and survminer modules in R were utilized
to perform Kaplan-Meier analysis on patients’ overall
survival (OS) and provide a comparison between various
groups. The Kruskal-Wallis test or Wilcoxon signed-rank
test was used to determine if there were any differences
between the subtypes. To explore relevant predictive
markers, we used the univariate Cox analysis. With the
assistance of the survivalROC R package, an analysis of
the ROC curve was carried out to determine the accu-
racy of the risk model in anticipating patients’ OS. The R
software (version: 4.1.0) was used for all of the statistical
analyses.

Results
Consensus clustering identified three inflammation-based
subtypes
The inflammation-related gene set was obtained from
gene-set enrichment Analysis (HALLMARK_INFLAM-
MATORY_RESPONSE). We used the STRING database
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to perform PPI network analysis on these inflammation-
related genes in order to fully comprehend their inter-
actions with one another (Fig. 1A). Subsequently, we
identified the LGG inflammation-based clusters utilizing
consensus clustering. After k-means clustering, we iden-
tified 3 clusters within the TCGA cohort that showed
different expression patterns of inflammation genes
(Fig. 1B and C). The expression levels of inflammation
genes varied among different clusters. Specifically, clus-
ters C2 demonstrated the highest levels of inflammation
genes expression. In contrast, clusters C3 were found to
have the lowest expression levels, and clusters C1 showed
medium levels (Fig. 1D).

Using the ssGSEA method, we also quantified the
inflammatory response score of each patient. The result
revealed that patients stratified into clusters C2 pre-
sent the highest inflammatory response score followed
by C1 and C3 (Fig. 1E). Hence, we designated clusters
C2 as an inflammation-high subtype, clusters C3 as an
inflammation-low subtype, and clusters C1 as an inflam-
mation-mid subtype. Subsequently, to compare the
transcriptional patterns of the various inflammatory sub-
types, the principal component analysis (PCA) was con-
ducted. In general, PCA illustrated that the samples from
the three clusters were highly isolated from one another,
which indicated distinct transcriptional profiles among
these subtypes (Fig. 1F).

We further validated the repeatability of inflammation-
based classification in three large independent sample
cohorts (CGGA, n = 575, and Rembrandt, n = 121). Sim-
ilarly, patients in CGGA and Rembrandt cohort can be
stratified into inflammation-low, inflammation-mid, and
inflammation-high subtypes (Additional file 3).

Patients stratified into different inflammation subtypes

presented variant prognosis and clinicopathologic features
Previous studies showed that inflammatory responses
play decisive roles in the tumor development of glioma.
Survival analyses confirmed that these inflammation-
based subtypes had specific clinical outcomes, which was
consistent with the available data. In general, the inflam-
mation-high subtype presented a dismal prognosis with
the shortest overall survival time and progress-free sur-
vival (Fig. 2A). In contrast to the inflammation-high sub-
type, the inflammation-low subtype was associated with
the most favorable clinical outcomes among the three

(See figure on next page.)

Fig. 1 Identification of three inflammation subtypes in LGGs. A Protein—protein interactions among 200 inflammation response genes. B Delta
area curve of consensus clustering. C Heatmap depicting consensus clustering solution (k = 3) for 200 genes in 509 samples. D Heatmap of 200
inflammation response genes expression in different subgroups; red represents high expression, and blue represents low expression. E Violin plots
indicating the differences in these subtypes. F Principal component analysis plots. ****P < 0.0001
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Fig. 1 (See legend on previous page.)
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Fig. 2 Difference of prognosis and clinicopathologic features among the inflammation subtypes. A and B Kaplan-Meier overall survival curves
for patients assigned into inflammation-low, -mid, and -high subtypes in TCGA (A), CGGA, and Rembrandt cohort (B). C Heatmap presenting the
clinicopathologic features of these subtypes. D 1p19q codeletion and IDH1 mutation frequency among these subtypes
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subtypes. These findings were additionally validated in
CGGA and the Rembrandt cohort (Fig. 2B).

We further compared the clinicopathologic features
of the three subtypes. Patients stratified into inflamma-
tion-high subtypes were associated with high mortality,
unmethylated MGMT promoter status, IDH wild-type
status, 1p19q non-codeletion status, WHO III grade,
and astrocytoma histology. Conversely, inflammation-
low subtypes mainly included low mortality, methyl-
ated MGMT promoter status, IDH mutant status, 1p19q
codeletion status, WHO II grade, and oligodendroglioma
histology (Fig. 2C and D).

Inflammation-based subtypes are associated with distinct
tumor microenvironments (TME)

TME composition has been shown to be significantly
altered by inflammation, which has a strong impact
on immune cells in particular. We examined the TME
compositions among different subtypes. Briefly, the
immune score shared a gradual decrease from the
inflammation-high to the inflammation-low subtypes
(Fig. 3A), whereas tumor purity demonstrated a gradual
increase (Fig. 3B). These indicated that inflammation
high was infiltrated with a higher level of immune cells.

Next, the CIBERSORT method was performed to
determine the immune heterogeneity among these sub-
types. Figure 3C summarizes the landscape of 22 different
immune cell infiltrations. In detail, patients with inflam-
mation-high subtype exhibited substantially greater levels
of immunosuppressive cells (M2-type macrophages) and
resting immune cells (e.g., resting CD4 memory cell and
resting NK cells) but significantly lower proportions of
T-cell follicular helper and B-cell plasma (Fig. 3D). Besides,
most of the immune checkpoint was elevated in the inflam-
mation-high subtype. Conversely, an inverse pattern was
revealed in the inflammation-low subtype (Fig. 3E). These
findings illustrated that the immunosuppressive cells, inac-
tivated NK cells, and enhanced expression of an immune
checkpoint may drive the immunosuppressive microenvi-
ronment of inflammation-high subtype.

Antitumor immunity may be interpreted as seven
sequential processes collectively referred to as the “can-
cer-immunity cycle” (Additional file 4). We evaluated the
anticancer immunological function of the seven-step can-
cer-immunity cycle in three subtypes using TIP (a web ser-
vice for determining tumor immunophenotype profiling).
Although inflammation-high subtype presented the high
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activity of step 1 (antigen release from tumors), step 4 (T
cells transfer to tumors), and step 5 (immune cells infiltra-
tion into tumors), the great attenuation of step 6 (tumor cell
detection by T cells), and step 7 (tumor cells apoptosis) was
observed (Fig. 4A). However, inflammation-high subtype
was associated with enhanced activity of step 6 and step 7
but a restrain of step 1, step 4, and step 5 (Fig. 4A). These
indicated that mitigation of immunosuppressive microenvi-
ronment in inflammation-high subtype and amelioration of
immune cell infiltration in inflammation-low subtype might
contribute to good clinical outcomes in LGGs. Besides,
genes that participated in the negative modulation of the
immune processes were predominantly upmodulated in
inflammation-high subtype followed by inflammation-mid
subtype and low inflammation-low subtype (Fig. 4B).

Moreover, we analyzed the underlying pathways corre-
lated with the inflammation subtypes. GSEA-enrichment
analysis revealed that inflammation-high subtype had a
substantially enriched negative modulation of the immune
pathways, including TGF-f signaling, hypoxia, epithelial-
mesenchymal transition, and angiogenesis (Fig. 4C).

These findings suggested that patients with inflamma-
tion-high subtype are prone to developing an immuno-
suppressive microenvironment that is characterized by
the up-modulation of immunomodulatory cytokines,
immune checkpoints expression, and immunosuppres-
sive cell infiltration, which may ultimately contribute to
the dismal prognosis.

Somatic mutations landscape in inflammation-high,
inflammation-mid, and inflammation-low subtypes

We discovered that the somatic mutation patterns of
these subtypes were different. Even though IDH is the
most common mutation, the relative rates of IDH muta-
tions vary across various subtypes. Inflammation-low
and inflammation-mid subtypes were found to have an
increased IDH1 mutation frequency, which accounted
for 85% and 90% of the total mutations while only 47%
mutations for inflammation-high subtype (Fig. 5A-C).
Besides, inflammation-mid subtypes presented the
highest frequency of TP53 mutations (73%) followed by
inflammation-high (45%) and inflammation-low sub-
types (15%). Moreover, the tumor mutation burden score
shared a gradual increase from inflammation-low to
inflammation-high subtypes (Fig. 5D), while no signifi-
cant differences were observed in terms of microsatellite
instability (Fig. 5E).

(See figure on next page.)

Fig. 3 Inflammation-based subtypes are associated with distinct tumor microenvironment. A and B Violin plots showing the median, quartile,
and kernel density estimations for each immune score (A) and tumor purity score (B). C Relative proportion of immune infiltration in LGG samples.
D and E Boxplots representing the differential distribution of immunoreactive, immunosuppressive cells (D) and immune checkpoints (E) in the

various inflammation subtypes
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Subsequently, we examined the mutation frequency in
9 major oncogenic pathways in each one of those sub-
types. Our results revealed that most of the oncogenic
mutated pathways were detected in inflammation-high
and -mid subtypes, including RTK-RAS, PI3K, TP53,
Notch, and Hippo pathways (Fig. 5F). Notably, these
oncogenic mutated pathways were rarely detected in the
inflammation-low subtype.

Establishment and verification of the inflammation-related
prognostic signature

We further created a prognostic model depending on
inflammation genes. One-hundred thirty-nine of the
200 inflammation genes were identified as having a

substantial association with the patients’ OS according
to the results of the Cox univariate analysis. Figure 6A
summarized the top ten genes with the most significant
p-value. As depicted in Fig. 6B, 139 inflammation genes
identified by Cox univariate analysis were evaluated
and chosen for predicting the prognostic value of the
model in the LASSO regression analysis. The develop-
ment of the risk-score model was achieved according to
the following equation: risk score = (0.0153) x EMP3
+ (0.0024) x E3 + (0.0118) x TNFAIP6 + (0.0093) x
ITGBS + (0.0034) x IENGR2 + (0.0168) x MSRI +
(0.0169) x DCBLD2 + (—0.0013) x ABII + (—0.0047)
x PCDH7 (Fig. 6C). Additionally, we examined the
relationship between risk score and survival status.
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As illustrated in Fig. 6D, our findings revealed that in
the low-risk cohort, the number of alive statuses sub-
stantially elevated in contrast with that of the high-risk
cohort. The prognostic value regarding the risk model
was further determined utilizing Kaplan—Meier analy-
sis. Overall, the high-risk score was associated with the
unfavorable OS and PFS in the TCGA training cohort
(Fig. 6E), which was additionally verified by the CGGA
and Rembrandt testing cohort (Fig. 6F).

The inflammation risk signature has significant predictive
value for prognosis evaluation

We conducted a receiver operating characteristic
(ROC) curve to estimate the prediction effectiveness of
the inflammatory risk signature in terms of 1-, 3-, and
5-year survival rates. Moreover, the 1-, 3-, and 5-year
areas under the ROC curve (AUC) were 0.893, 0.859,
and 0.739, respectively, demonstrating a strong predic-
tive significance (Fig. 7A). We also compared the prog-
nostic efficiency of the inflammation risk signature based
on clinical characteristics in LGG, such as 1p19q status,
grade, IDH status, gender, MGMT promoter status, age,
and ATRX status. The results demonstrated that inflam-
mation risk presented the best performance in predicting
the prognosis compared to other clinical characteristics
(Fig. 7B).

Multivariate and univariate Cox analyses were sub-
sequently conducted to estimate the independent prog-
nostic significance of inflammation risk signature with
respect to the OS. As illustrated in Fig. 7C, the findings
from the univariate analysis illustrated that high inflam-
mation risk score was considerably associated with an
unfavorable OS. Other parameters related to unfavora-
ble OS included 1p19q status, IDH status, grade, age, and
MGMT promoter status. Figure 7D depicts the findings
from multivariate analysis, which illustrated that high
inflammation risk score exhibited an independent link
to a considerably unfavorable OS, implying that it could
independently act as a prognostic predictor for LGG
patients (Fig. 7D).

Validation of inflammation genes expression pattern

via scRNA-seq analysis

To confirm further that the detailed type of cells express-
ing these inflammation genes constituted the risk sig-
nature in the TME, we analyzed LGG scRNA-seq
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utilizing data from GSE70630. A total of 4 cell clusters
were detected via uniform manifold approximation and
projection (UMAP), namely AC-like malignant cells,
monocyte-macrophages, OC-like malignant cells, and
oligodendrocyte (Fig. 8A). The results showed that ABII,
ITGBS, and PCDH7 were predominantly expressed in
malignant cells, while IFNGR2, MSR1, and EMP3 were
predominantly expressed in monocyte macrophages
(Fig. 8B and C). Besides, F3, DCBLD2, and TNFAIP6
were detected at low level in both non-tumor cells and
tumor cells.

Discussion

In the present study, we were interested in identify-
ing LGG subtypes according to their inflammatory
responses. Our results demonstrate that LGG might be
classified into inflammation-high, -mid, and -low sub-
types with distinct clinicopathologic features, prognos-
tic, and tumor microenvironment. The findings in the
present study demonstrated that this kind of classifica-
tion was repeatable as well as predictable. In general, the
inflammation-high subtype presents a dismal progno-
sis with the immunosuppressive microenvironment and
high frequency of oncogene mutation. In contrast, the
inflammation-low subtype was associated with the most
favorable clinical outcomes with the immunoreactive
microenvironment among the three subtypes. Moreover,
we develop and validate an inflammation-related prog-
nostic model, which presents strong power for prognosis
assessment.

Historically, the central nervous system was defined as
an immune privilege. This understanding was based on
the presence of tight junctions in the blood-brain bar-
rier and the absence of a classic lymphatic drainage sys-
tem. However, this notion of immune privilege has been
revised since the discovery of a functional lymphatic sys-
tem in mice along the dural sinuses [18, 19]. Currently,
it has been established that functional lymphatic ves-
sels exist in the CNS, as well as antigen-presenting cells
(APCs) of many types, including microglia, macrophages,
astrocytes, and classic APCs such as dendritic cells
(DCs). Moreover, in certain brain tumors, the blood-
brain barrier is often damaged, allowing the infiltration
of multiple immune cell types from the peripheral cir-
culation [20]. Although brain tumors present relatively
low tumor-infiltrating T cells indicating immunologically

(See figure on next page.)

Fig. 6 Construction and validation of the inflammation-related prognostic signature. A Univariate cox analysis of 200 inflammation genes
associated with overall survival. Top ten genes with most significant p-value are presented. B Lasso Cox analysis uncovered nine genes most
associated with OS. C The coefficient of the nine genes identified by Lasso Cox analysis. D Risk scores distribution, survival status of each patient,
and heatmaps of prognostic nine-gene risk signature. E and F Kaplan-Meier curves for patients with high- or low-risk scores in TCGA training cohort

(E), CGGA testing cohort, and Rembrant cohort (F)
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“cold, the majority of immune cells are macrophages,
often comprising up to ~30% of the tumor mass [21, 22].
Current studies show that TAMs in glioma are predomi-
nantly of the immunosuppressive M2 subtype and play
an immunosuppressive role via upregulating the expres-
sion of PD-L1 [23, 24]. Besides, chronic inflammation
meditated by macrophages M2 is proved to drive glioma
growth [25]. In our analysis, patients with inflamma-
tion high exhibited substantially elevated levels of mac-
rophages M2, which may account for the high expression
of immune checkpoint molecular in inflammation-high
subtype.

The tumor microenvironment performs an instru-
mental function in the occurrence and progression of
glioma. A glioma TME is comprised of immune cells,

endothelial cells, tumor cells, and a range of cytokines
released by the cells. The immune cells found in glioma
TME include dendritic cells, microglia, natural killer
cells, myeloid-derived suppressor cells, regulatory T
cells, T lymphocytes, and macrophages. These cells
interface with tumor cells and contribute to the regula-
tion of immunological actions inside the TME [26]. In
the glioma TME, the most multifunctional cells group
is the glioma-associated microglia and macrophages
(GAMs) [27]. When exposed to a variety of microen-
vironments, GAMs exhibit high plasticity and may
undergo polarization into a number of distinct pheno-
types. M1 and M2 are the two phenotypes of activated
GAMs that have been identified so far. M1 and M2 have
diametrically opposed functions. Specifically, the M1
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Fig. 8 scRNA-Seq reveals inflammation genes expression patterns. A UMAP plots showing major cell subsets identified by 10x genomics. B and C
Violin plots (B) and UMPA (C) plots showing different expression patterns of inflammatory response genes

phenotype possesses antitumor properties, while the = TGEF-B to stimulate the growth, invasion, and migration
M2 phenotype possesses immunosuppressive properties  of gliomas by promoting the formation of tumor-related
and produces cytokines such as EGF, IL-1B, IL-6, and  blood vessels and tumor metastasis [23, 28—30]. In our
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study, patients with different inflammation subtypes
presented distinct tumor microenvironments. Patients
with inflammation-high subtype have a higher likelihood
of developing immunosuppressive microenvironment
that is characterized by the up-modulation of immune
checkpoints expression, immunosuppressive cytokines,
and immunosuppressive cell infiltration, which may
ultimately contribute to the dismal prognosis. Notably,
patients with inflammation high exhibited substantially
elevated levels of macrophages M2.

Despite a multiplicity of clinical trials investigating
immune checkpoint inhibitors, the potential predic-
tive biomarkers are still uncertain in glioma. Recently,
three studies have focused efforts on in-depth analy-
sis of glioblastoma tissue from patients treated with
immune checkpoint inhibitors (ICIs) therapy [31-33].
The results show increased expression of chemokine
transcripts, IFNy-related genes, higher infiltration of
immune cells, and increased diversity of TCR clones
among tumor-infiltrating lymphocytes, support-
ing an immunomodulatory effect of the ICIs therapy.
However, limited by sample size, these finds need
verification with large sample sizes. In our analysis,
inflammation-high LGG patients were associated
with high immune infiltration and may be poten-
tially sensitive to the current ICIs therapy. Neverthe-
less, it should be noted that the association between
inflammation subtypes and immunotherapies of LGG
requires further validation in vitro or in vivo. Our
findings should be interpreted with this limitation in
mind.

It is important to note that gliomas are significantly
diverse, with several subtypes. A precise approach for
classifying glioma has been developed as a result of the
finding of numerous critical genetic markers, the most
notable of which being IDH mutations and the 1p/19q
deletion [8, 11, 34—36]. This method has strong prognos-
tic values. Several large randomized studies, including
the initial retrospective series and successive retrospec-
tive analyses, have shown that 1p/19q deletion is a pow-
erful prognostic and predictive indicator in LGG. Here,
we compared the predictive efficiency of inflamma-
tion risk signature with 1p/19q deletion, IDH mutation,
MGMT promoter status, and ATRX status. The results
demonstrated that inflammation risk presented the best
performance in predicting the prognosis compared to
other clinical characteristics.

To conclude, we developed a new glioma classifica-
tion system on the basis of the inflammatory subtype
of the tumor. This classification produced meaningful
results in evaluating patients’ prognoses and the tumor
microenvironment.
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