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Abstract 

Background:  The intestine is rich in food-derived and microbe-derived antigens. Regulatory T cells (Tregs) are an 
essential T-cell population that prevents systemic autoimmune diseases and inhibits inflammation by encounter-
ing antigens. Previously, it was reported that the functional loss of Tregs induces systemic inflammation, including 
inflammatory bowel disease and graft-versus-host disease in human and murine models. However, there is a dearth 
of information about how Tregs localize in different tissues and suppress effector cells.

Main body:  The development of Tregs and their molecular mechanism in the digestive tract have been elucidated 
earlier using murine genetic models, infectious models, and human samples. Tregs suppress immune and other non-
immune cells through direct effect and cytokine production. The recent development of in vivo imaging technology 
allows us to visualize how Tregs localize and move in the settings of inflammation and homeostasis. This is important 
because, according to a recent report, Treg characterization and function are regulated by their location. Tregs located 
in the proximal intestine and its draining lymph nodes induce tolerance against food antigens, and those located 
in the distal intestine suppress the inflammation induced by microbial antigens. Taken together, various Tregs are 
induced in a location-specific manner in the gastrointestinal tract and influence the homeostasis of the gut.

Conclusion:  In this review, we summarize how Tregs are induced in the digestive tract and the application of in vivo 
Treg imaging to elucidate immune homeostasis in the digestive tract.
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Background
Regulatory T cells (Tregs) are important for main-
taining immune tolerance for self-antigens and sup-
pressing inflammation. Loss of Tregs function induces 
autoimmune diseases and disrupts the overall home-
ostasis [1–4]. Tregs in inflammatory bowel disease 
(IBD) patients were less able to suppress the effector 
cells in the lamina propria [5, 6]. Moreover, the risk of 

graft-versus-host disease (GVHD) following bone mar-
row transplantation was associated with the depletion 
of Tregs in peripheral blood, while the introduction of 
Tregs into GVHD mice improved their survival [7, 8].

The importance of Tregs was elucidated using mice and 
human forkhead box p3 (Foxp3) gene mutation studies; 
human IPEX (immune dysregulation, polyendocrinopa-
thy, enteropathy, X-linked) syndrome, caused by Foxp3 
mutation, induces early onset of T-cell-dependent lym-
phoproliferation with cytokine storm [9–12].

The mechanism of Treg suppression of other immune 
cells was studied extensively [13, 14]. Tregs express a 
substantial number of genes, including those of secreted 
proteins and molecules, on the cell surface. They sup-
press other immune cells via cell contact independent 
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and dependent mechanisms. The suppression via a cell 
contact independent mechanism is through the secretion 
of the major cytokines, such as IL-10, IL-35, granzyme B, 
and TGFβ [15–17]. Lack of IL-10 and IL-35 production 
by Tregs induces inflammation in the colon and lungs 
[18, 19]. TGFβ, which is essential for the induction of the 
Tregs, suppresses helper T-cell 1 (Th1) response [20, 21].

Tregs-induced suppression via cell contact-depend-
ent mechanism is performed through the major mol-
ecules expressed on Tregs surface, such as IL-2 receptor 
(IL-2R), CTLA-4, PD-1, LAG-3, GITR, and TIGIT. 
CD25, known as the original Treg cell marker, is highly 
expressed by Tregs (Fig. 1A). High levels of IL-2R expres-
sion deprive effector T cells of IL-2, resulting in inhibi-
tion of proliferation [22]. CTLA-4 downregulates the 
CD80/CD86 expression on the antigen-presenting cells 
(APCs) [23, 24]. Accordingly, patients with CTLA-4 hap-
loinsufficiency have impaired Treg functions, leading to 
the development of Crohn’s-like intestinal inflammation 
[25–27]. Moreover, patients treated with anti-CTLA-4 
antibodies developed colitis as a side effect.

The PD-1 co-inhibitory receptor is highly expressed on 
Tregs. PD-1-mediated signaling inhibits CD28 costimu-
lation by binding PD ligands 1 and 2, resulting in the 
inhibition of T-cell costimulation in the early phase after 
antigen stimulation [28].

LAG-3, which binds MHC class 2, is required for the 
suppressive activity of Tregs [29]. LAG-3 suppresses 
IL-23 on Cx3cr1+ macrophage, enhancing IL-22 produc-
tion from group 3 innate lymphoid cells in an anti-CD40 
colitis model [30]. TIGIT promotes IL-10 production on 
APCs [31]. GITR, one of the TNF receptor family mem-
bers, is highly expressed on Tregs [32, 33].

More details about the functioning of Tregs have 
been elucidated recently, yet their action in vivo is still 
unknown. We review how the Tregs are generated and 
summarize Treg localization and movement in the gut 
using an in vivo imaging system.

Importance of Tregs in the gut
Tregs develop in either the thymus or peripheral tissue. 
Tregs that develop in the thymus are called “tTregs,” 
and transcription factors such as Helios or Neuropilin 
are used to identify tTregs [34–40]. The other Tregs 
originating extrathymically in peripheral tissues are 
called “pTregs.” pTregs develop from T conventional 
cells (Foxp3− cells) [41, 42]. Based on their location and 
function, pTregs can be classified into three groups: 
central, effector, and tissue-resident Tregs. Central 
Tregs that express CD62Lhigh and CCR7+ are the major 
population of naïve Tregs, and they localize in second-
ary lymph nodes. Effector Tregs are CD62Llow CCR7low 
Tregs. Tissue-resident Tregs reside in nonlymphoid 

organs, especially the colon. Most of the Tregs in the 
gut in a steady state are tissue-resident pTregs [13, 43]. 
Like conventional T cells, Tregs are governed by spe-
cific transcriptional factors. T-bet+ Tregs, IRF4+ Tregs, 
and STAT3+ Tregs suppress Tbet+ T cells (Th1), IRF4+ 
T cells (Th2), and STAT3+ T cells (Th17), respectively 
[44–46]. Other Tregs express unique transcription fac-
tors to adapt to their microenvironment. For instance, 
some GATA3+Helios+Tregs expanded during tissue 
damage response to IL-33 [47, 48].

In the gut, some of the pTregs express the transcrip-
tional factor retinoic acid-related orphan receptor-γt 
(Rorγt), which was initially described as the essential 
transcriptional factor for Th17 cell development [49] 
(Fig. 1B).

Rorγt+ pTregs develop under the existence of microbial 
antigens; they inhibit Th17 response during gut inflam-
mation [50]. Rorγt− Helios− pTregs are induced by die-
tary antigens [51]. According to a recent report, Treg 
characterization and function are regulated by location. 
Tregs located in the proximal intestine and its draining 
lymph node induce tolerance against the food antigens, 
while those in the distal intestine suppress inflammation 
induced by the microbial antigens [52] (mentioned in the 
“Treg localization and movement in the gut,” see Fig. 1C). 
Taken together, various Tregs are induced in a location-
specific manner in the gastrointestinal tract.

Treg in vivo imaging
CD4 imaging of lymphoid tissue is used to be challeng-
ing; now, two-photon intravital microscopy makes in vivo 
imaging possible (Fig. 2). Two-photon imaging enables us 
to visualize how the antigen is transferred from DCs to T 
cells in lymph nodes [53]. To visualize Tregs in vivo, two-
photon microscopy was used to visualize CFSE-labeled 
CD4+CD25+T cells in lymphoid tissues [54, 55]. An anti-
gen-specific model was developed to demonstrate that 
the contact of Tregs with dendritic cells (DCs) is required 
to inhibit Th cell activation. Imaging analysis revealed 
that Tregs in lymph nodes stopped for longer durations 
when they encountered antigen-bearing DCs and did 
not interact with CD4 non-Tregs. These data suggest 
that Tregs directly suppress the function of APCs, result-
ing in the inhibition of Th cell activation. CFSE-labeled 
CD4+CD25+T cells are injected during in vivo imaging 
to visualize the connection between other immune cells 
and cell proliferation. This system enables us to visual-
ize Treg movement in an antigen-specific model. How-
ever, it is difficult to envisage where transferred cells do 
not migrate to, as the florescent activity fades in a time-
dependent manner. Moreover, ex  vivo cultured CFSE-
labeled CD4+CD25+T cells may not have the same 
movement as internal Tregs.
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To visualize live internal Tregs in tissue, we devel-
oped the tamoxifen-inducible Foxp3eGFPcreERT2: Rosa26t-

dTomato mice [56, 57]. Tamoxifen can visualize the bona 
fide Tregs. Some unstable Tregs differentiate to other 

cells such as Th17, Th1, and CD8a expressing cells in the 
peripheral tissue, called exTregs [2, 57–61]. We visualized 
Tregs after 24 h of the tamoxifen induction, as more than 
99% of tomato-positive cells still expressed Foxp3 protein 

Fig. 1  Characteristics of Treg in gut. A Tregs suppress effector cells and antigen-presenting cells via surface protein and cytokine. B 
Helios+Gata3+Foxp3+Tregs (thymic Tregs: tTregs), Helios−Rorγt+Foxp3+Tregs (peripheral Tregs: pTregs), Helios−Rorγt−Foxp3+Tregs (peripheral 
Tregs: pTregs) in small intestine (left) and colon (right). The percentage of each population in total Tregs was listed below. C Schema of generation 
of peripheral Tregs in gut
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[56, 57]. The benefit of this model is to visualize the inter-
nal bona fide Tregs, thus enabling us to image nonlym-
phoid organs. However, it is not quite feasible to image 
Tregs and immune/nonimmune cells simultaneously.

Treg localization and movement in the gut
The distribution of Tregs in the gastrointestinal tract was 
different among different organs [62–65].

Stomach
The role of Tregs in the stomach is not well understood. 
Infection with Helicobacter spp. is the trigger for chronic 
gastric inflammation, resulting in gastric cancer. How-
ever, in the mouse model, Helicobacter spp. induced 
inflammation in the small intestine and colon, especially 
in IL-10 knockout mice [66–68]. Tregs were observed 
to localize near the bottom of the glandular epithelium 
but not near the luminal side (Fig.  3). Further research 
is required to understand the function of Tregs in the 
stomach.

Small intestine
Oral antigen ovalbumin (OVA) is the commonly used 
model food antigen to understand Treg induction. 
Oral tolerance to OVA is dependent on the resident 

intestinal DCs, resulting in the induction of Tregs in the 
small intestine [69]. CD103+ DCs have more potential 
to induce Tregs than CD103− DCs do, as CD103+ DCs 
highly express retinal aldehyde dehydrogenase (RALDH) 
[70]. The enriched retinol, vitamin A, and its metabolite 
(retinoic acid (RA)) are highly concentrated in the small 
intestine. RA produced by the enzyme RALDH is essen-
tial for the induction of Tregs [21]. Moreover, TGFβ itself 
induces CD11b+CD103+ DCs.

The distribution of the DC subsets is different in 
the small intestine and colon. The proportion of 
CD11b+CD103+ DCs is higher in the small intestine than 
that in the colon, whereas the CD11b−CD103+ DCs are 
the major population in the colon [63]. Consistent with 
the abundance of CD11b+CD103+ DCs in the small 
intestine, RALDH activity is the highest in the small 
intestine. These findings highlight the fact that the induc-
tion of Tregs in the small intestine is established by the 
relationship between the CD103+DCs and environmen-
tal factors, including RA and TGFβ.

TGFβ is produced by cells other than CD103+DCs. 
For instance, TLR2+ DCs produce TGFβ and IL-10 by 
polysaccharide A (PSA), and epithelial cells (ECs) also 
produce TGFβ by short-chain fatty acids (SCFAs) (i.e., 
metabolite of dietary fiber) [71, 72]. SCFAs also act 

Fig. 2  Two different techniques for in vivo imaging. In the procedure shown to the left, cells are isolated from organs harvested from mice, labeled 
with a specific dye, and transferred into mice. On the other hand, the procedure shown on the right establishes mice transgenic with the creERT2 
gene and fluorescent protein targeting specific cells. The mice are then injected with the hormonal substance tamoxifen, which induces the 
activity-dependent expression of the fluorescent protein by Cre recombinase, allowing in vivo observation. Pros and cons for each method are listed 
at the lower part of the figure
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directly on CD103+DCs via GPR109A [13, 73]. Recently, 
Rorγt+ innate lymphoid cells (ILC3) directly and indi-
rectly produce Rorγt+ Tregs. ILC3 are activated by 
IL-1β+ macrophage [30]. MHC class 2-positive ILC3 
directly induce Rorγt+ Tregs in colon, while CSF2 pro-
duction from ILC3 indirectly induces Rorγt+ Tregs 
through the activation of CD103+DCs [74–77].

A small number of Tregs in the small intestine are 
localized in the intraepithelial compartment, while most 
Tregs in the small intestine are localized in the lamina 
propria. Moreover, unlike stomach and colonic Tregs, 
Tregs in the small intestine are localize through the mid-
dle of the villi to the bottom (Fig. 3).

Large intestine
Colonic Tregs are mainly induced by microbes and their 
metabolites. Germ-free mice have fewer colonic Tregs 
compared with specific pathogen-free mice [41, 42]. 
Clostridia species induce colonic Tregs [78]. SFCAs, such 
as butyrate, are a fermentation by-product of fiber diges-
tion by commensal bacteria [79].

In a recent study, T cells in the thymus recognize 
colonic microbe antigen, indicating that parts of the 

colonic Tregs are generated in the thymus [80, 81]. 
Colonic Treg TCRs cloned into hybridomas reactive 
against fecal extract were found in thymic Tregs; this 
supports the conjecture that some colonic Tregs are of 
thymic origin [82]. Colonic Tregs are located around 
the bottom of the crypts (Fig. 3C).

In vivo imaging enables us to track the cell movement 
in each tissue (movie 1). Tregs in the small intestine 
move in the lamina propria at a velocity of 40 μm/s, and 
Tregs in the colon move at a velocity of 20–30 μm/s. It 
is unclear why Tregs migrate at various speeds in differ-
ent tissues, but one possibility may be the difference in 
the spaces through which they migrate among different 
organs; another possibility may be due to the space in 
which they contact with surrounding immune and non-
immune cells.

TCRγδ T cells, abundant in the intraepithelial com-
partment, move at a speed of 30  μm/s. TCRγδ T cells 
interact with the intestinal epithelial cells (IECs) to 
detect microbe invasion and IEC damage, such as 
colon cancer [83, 84]. However, it remains unclear how 
Tregs interact with APCs and how they suppress other 
immune cells.

Fig. 3  The distribution of Tregs in the gastrointestinal tract. (upper panel) Localization of tdTomato+ Tregs (red) within the stomach (left), small 
intestine (middle), and colon (right). (lower panel) Localization of tdTomato+ Tregs (red) within stomach (left), small intestine (middle), and colon 
(right) after 7-day DSS administration. Vibratome sections of each tissues from Foxp3eGFPcreERT2Rosa26tdTomato mice were stained with phalloidin to 
show actin (white)
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Treg localization and intestinal disease
The 3D construction of Tregs in the peripheral tissue 
reveals that Tregs suppress not only immune cells but 
also other types of cells as well, such as fibroblasts, ECs, 
and neurons [85, 86]. Some Tregs are located near the 
intestinal stem cells, which induce IL-10 to sustain the 
intestinal stem cells. Some Tregs located near the enteric 
nerve and neuronal IL-6 induce the Rorγt+ Tregs to sus-
tain the intestinal homeostasis [87].

IBD, including ulcerative colitis and Crohn’s dis-
ease, is characterized by chronic inflammation of the 
gastrointestinal tract. Although its exact mechanism 
is still unknown, the colitis mouse model suggests the 
importance of Tregs in colitis. Tregs are essential for 
the inhibition of colitis in the T-cell-adoptive transfer 
model [2, 88, 89]. IL-10-deficient mice spontaneously 

developed colitis [90, 91]. Despite the surge in the 
number of Tregs in the inflamed tissues [92], the sup-
pressive function of Tregs is defected in these tissues.

The dextran sulfate sodium (DSS) model induced the 
localization of Tregs at the site of the chemical epithelial 
cell damage (Fig. 3). The localization of Tregs in the stom-
ach, small intestine, and large intestine was not so differ-
ent under DSS administration. Furthermore, previous 
studies observed that there was no change in the num-
ber of Tregs after DSS administration [2, 89]. These find-
ings suggest that the acute epithelial damage itself does 
not immediately alter the localization of Tregs. We ana-
lyzed Treg localization in the early stages of the epithelial 
damage but not in the late or recovery stages. Moreover, 
we did not induce other types of inflammation, such as 
Citrobacter infection or adoptive T-cell transfer models. 

Fig. 4  Treg location in steady-state and AHR-ligand diet condition
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Accordingly, further research is required to decipher how 
their localization is manipulated.

As previously mentioned, intestinal Tregs are gen-
erated by environmental cues (see “Treg localization 
and intestinal disease”); other nonimmune cells also 
contribute to the induction of Tregs. Stromal cells pro-
duce microbiome-dependent RA [93]. IECs educate the 
immune system, especially tolerogenic DCs by TGFβ and 
RA, to induce Tregs in humans [94].

Aryl-hydrocarbon receptor (AhR) agonist, which is fer-
mented by green vegetables, is one of the pivotal factors 
in maintaining gut homeostasis. Lack of the AhR signal 
induces chronic inflammation in the colon [95]. Indigo 
naturalis (IN) is an AhR agonist containing indole deriva-
tives, such as indigo, indirubin, and indole-3-aldehyde. IN 
diet increased GATA3lo Helios+ Rorγt− Tregs in the colon 
(IN-Tregs). Intriguingly, these IN-Tregs were located next 
to MHC class 2-positive ECs near the luminal side in IN-
fed mice, and they moved faster than the colonic Tregs 
in normal diet-fed mice [56] (Fig. 4). Thus, in vivo imag-
ing will help decipher how the cells migrate not only in the 
steady state but also in the treatment or disease state.

Conclusion
We summarized the localization and movement of Tregs 
in the gut, especially in the small intestine and colon. 
The novel technique of live imaging and the genetic 
development of animals have enabled us to visualize cell 
movement and localization. Integrating analysis of the 
localization/movement of immune cells with their func-
tion is required in the future. The next step in visualizing 
the condition of the cells will help us to understand how 
the immune homeostasis is regulated in vivo.
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