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Abstract 

Background Because of its poor intrinsic repair capacity, articular cartilage seldom heals when damaged.

Main body Regenerative treatment is expected for the treatment of articular cartilage damage, and allogeneic 
chondrocytes or cartilage have an advantage over autologous chondrocytes, which are limited in number. However, 
the presence or absence of an immune response has not been analyzed and remains controversial. Allogeneic-
induced pluripotent stem cell (iPSC)–derived cartilage, a new resource for cartilage regeneration, reportedly survived 
and integrated with native cartilage after transplantation into chondral defects in knee joints without immune rejec-
tion in a recent primate model. Here, we review and discuss the immunogenicity of chondrocytes and the efficacy 
of allogeneic cartilage transplantation, including iPSC-derived cartilage.

Short conclusion Allogeneic iPSC-derived cartilage transplantation, a new therapeutic option, could be a good indi-
cation for chondral defects, and the development of translational medical technology for articular cartilage damage 
is expected.

Keywords Articular cartilage, Chondrocytes, Induced pluripotent stem cells, Allogeneic transplantation, Immune 
response

Background
Articular cartilage covers the ends of bones and serves as 
a lubricant to ensure smooth joint movements. Articu-
lar cartilage consists of chondrocytes embedded in an 
abundant extracellular matrix (ECM), which is composed 

of type II, IX, and XI collagen molecules and proteogly-
cans. The ECM enables the mechanical functions of the 
cartilage. Cartilage has a limited regenerative capacity, 
and its damage tends to result in degenerative conditions, 
impairing joint function. Microfractures and autologous 
osteochondral transplantation have been used for rela-
tively small defects (less than 2–3  cm2) as a treatment for 
articular cartilage damage [1, 2]. Healthy articular carti-
lage is called hyaline cartilage and is composed of hyaline 
cartilage rich in collagen II and proteoglycans. However, 
when cartilage ECM is lost due to injury or degeneration, 
hyaline cartilage degenerates into fragile fibrocartilage 
rich in collagen I, compromising its function as an artic-
ular cartilage. During cartilage repair after injury, fibro-
cartilage is formed due to aberrant collagen expression. 
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Fibrocartilage is the result of cartilage fibrosis, and in 
many cases, repaired fibrocartilage, which lacks the origi-
nal function, shows inferior mechanical properties, and 
even worsens osteoarthritis symptoms [3]. Microfracture 
induces progenitor cells from the bone marrow to repair 
the defect; however, the tissue repaired by microfrac-
ture consists of fibrocartilage which does not have the 
mechanical robustness of hyaline cartilage and is there-
fore vulnerable to mechanical forces of the joint. In one 
case series study, microfracture showed good short-term 
results in the treatment of small cartilage defects, but 
the deterioration of results began 18 months postop-
eratively and was most pronounced in the International 
Cartilage Repair Society (ICRS)-score [4]. Clinical out-
comes of microfracture have tended to either plateau or 
deteriorate at longer follow-ups, raising concerns about 
long-term results [5]. Autologous osteochondral trans-
plantation carries the risk of donor-site morbidity.

The transplantation of autologous cultured chondro-
cytes is the most commonly used cell-based therapy for 
treating human cartilage defects. However, chondrocytes 
lose their chondrocyte nature after expansion in culture, 
and most of the repaired tissue is fibrocartilage tissue 
[6–8]. As only a limited number of autologous chondro-
cytes are prepared, repair is thought to occur through the 
trophic effect of growth factors and other factors pro-
duced by transplanted cells that stimulate host cells. This 
treatment is a two-stage procedure and carries the risk of 
donor site morbidity. Chondrocytes have been shown to 
have limited major histocompatibility complex (MHC) 
expression and immunosuppressive potential in vitro [9], 
and allogeneic chondrocyte transplantation has also been 
studied. However, their in vivo immunogenicity remains 
controversial [10]. One of the other major cell sources for 
cartilage repair is mesenchymal stem cells (MSCs), which 
can be obtained from bone marrow, adipose tissue, and 
synovium. MSCs can differentiate into chondrocytes and 
can also achieve therapeutic effects through paracrine 
effects. Furthermore, MSCs are involved in the cartilage 
repair process by modulating the immune response when 
damaged cartilage is exposed to an inflammatory envi-
ronment. Recent reviews have reported that functional 
heterogeneity of MSCs among donors, tissues, and MSC 
subpopulations leads to differences in cartilage repair 
capacity [11].

Cartilage tissue is considered immune-privileged 
because it is avascular and chondrocytes are surrounded 
by ECM [9, 12]. The ECM inhibits immune cells from 
contacting chondrocytes, thus avoiding immunological 
reactions, even under allogeneic conditions. Allogeneic 
cartilage has been transplanted in clinical practice with-
out human leukocyte antigen (HLA) matching or the use 
of immunosuppressive agents [13–15]. However, there 

are risks of donor shortage, heterogeneity in quality, and 
disease transmission. Recently, clinical trials using alloge-
neic human iPSCs have been conducted as a new regen-
erative medicine [16, 17]. iPSCs have unique pluripotency 
and self-renewal properties shared with embryonic stem 
cells (ESCs). iPSCs are created by introducing reprogram-
ming factors into somatic cells, such as skin or blood 
cells, whereas ESCs are acquired from the internal cell 
mass of embryos. Human iPSCs do not bear the ethical 
issues associated with the sacrifice of embryos associated 
with human ESCs. iPSCs are a promising resource for the 
regenerative treatment of diseased or damaged organs 
and tissues, including articular cartilage damage, and the 
generation of iPSC-derived cartilage composed of chon-
drocytes and ECM has already been reported [18–20]. 
The self-renewal ability of iPS cells enables an unlimited 
supply of allogeneic iPSC-derived cartilage, solving the 
problems of allogeneic cartilage, such as the scarcity of 
donors and variations in cartilage quality among donors. 
Thus, allogeneic iPSC-derived cartilage transplantation 
may be a viable treatment option for articular cartilage 
damage. However, there have been reports of rejection 
after allogeneic chondrocyte transplantation [21–24], 
and it remains controversial whether transplanted allo-
geneic cartilage can cause an immune response. In this 
review, we summarize the immune response and efficacy 
of allogeneic cartilage transplantation for articular carti-
lage injury and discuss the recent advances in allogeneic 
iPSC-derived cartilage transplantation.

Immunogenicity of chondrocytes in vitro
Articular cartilage is generally considered immune-
privileged because of its avascularity and because chon-
drocytes are embedded in the ECM (Fig.  1a). Previous 
in  vitro studies have reported on the immunogenicity 
of chondrocytes prepared by the digestion of the ECM 
with collagenase or other agents. They reported that the 
co-culture of chondrocytes with allogeneic lymphocytes 
did not promote lymphocyte proliferation [9, 25–27]. 
Juvenile chondrocytes are less immunogenic than adult 
chondrocytes because of their lower HLA expression 
and have a stronger anabolic effect on ECM formation 
[9, 26, 28]. In addition, the immunosuppressive potential 
of chondrocytes has been reported, and the chondrocyte 
expression of B7 family members (B7-H1, B7-DC, B7-H2, 
B7-H3, and B7-H4), which act as inhibitory signals to T 
cells, chondromodulin-I, a T cell growth inhibitor, and 
indoleamine 2,3-dioxygenase, a mediator of immune eva-
sion, has been suggested as a mechanism of immunosup-
pression [9]. These results suggest that chondrocytes are 
immune privileged, at least in  vitro. However, juvenile 
chondrocytes stimulated with recombinant human inter-
feron γ (IFNγ) show an increased expression of MHC 
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Class I (HLA-ABC) (Fig. 1b); therefore, they can become 
immunogenic under inflammatory conditions, such as 
osteoarthritis [9].

Immunogenicity of chondrocytes in vivo
There have been numerous reports of allogeneic chon-
drocyte transplants that are not rejected in  vivo in ani-
mal models of knee cartilage defects [29–36]. However, 
some studies have observed certain immune responses, 
such as lymphocyte and macrophage aggregation [21–24, 
37]; therefore, allogeneic chondrocyte transplantation 
in  vivo is controversial. A combination of various fac-
tors, including differences in the animal species used, the 
method of preparation of chondrocytes for transplanta-
tion, and even the technique of defect preparation, may 
be responsible for these conflicting results [10]; however, 
the details of the immune response in allogeneic trans-
plantation of chondrocytes have not been elucidated. 
Cartilage injuries are classified as osteochondral or chon-
dral defects. One major difference between the two types 
of defects is that, in osteochondral defects, the graft is 
exposed to blood flow from the bone marrow. Blood flow 
can significantly affect immune responses. It has been 
reported that cartilage formed by the transplantation of 
allogeneic chondrocytes into articular cartilage defects in 

rats was infiltrated by immune cells migrating from the 
bone marrow, but not on the surface of transplants fac-
ing the joint cavity. This result suggests that the immune 
response occurs via the bone marrow and not the joint 
cavity [38].

Cellular infiltration involved in the rejection of carti-
lage formed by intramuscular allogeneic chondrocyte 
transplantation has been evaluated immunohistochemi-
cally in rats [39]. It has been suggested that activated 
monocytes, macrophages, and chondrocytes are involved 
in the lysis of the cartilage matrix during the rejection 
process and that the death of transplanted chondrocytes 
is mediated by infiltrating cytotoxic lymphocytes. There 
are no detailed reports on the immune responses of 
grafts to cartilage defects, and it is uncertain whether a 
similar process follows.

Allogeneic cartilage grafts in animal models
Studies of particulate juvenile allograft cartilage (PJAC) 
have been widely studied in allogeneic cartilage tissue 
transplantation. PJAC is composed of minced live carti-
lage allografts from juvenile donors containing chondro-
cytes within their native extracellular matrix. Juvenile 
cartilage is considered less immunogenic, and minced 
cartilage allows chondrocytes to diffuse out of the ECM 

Fig. 1 Limited immunogenicity of articular cartilage. a Histological image of articular cartilage. ECM inhibits contact of immune cells 
with chondrocytes. b Expression of MHC-I molecules on chondrocytes. Chondrocytes stimulated with IFN-γ show increased expression of MHC-I, 
suggesting that in the absence of ECM, they can become immunogenic under inflammatory conditions. c Immune response in allogeneic 
iPSC-derived cartilage transplantation. In osteochondral defects, T cells are observed around the graft. On the other hand, the graft is engrafted 
without immune response in chondral defects
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to form new hyaline-like cartilage [9, 26, 28]. Juvenile 
chondrocytes show excellent ECM production capac-
ity in  vitro [26, 28], and increased fragmentation sig-
nificantly enhances ECM production [40]. A study in a 
rabbit model showed that minced cartilage grafts embed-
ded in atelocollagen gel repaired osteochondral defects 
to the same extent as autologous chondrocyte implan-
tation (ACI) [41], whereas another study reported that 
PJAC repaired osteochondral defects with hyaline car-
tilage-like tissue and showed significantly higher modi-
fied O’Driscoll scores than controls [42]. Studies in pigs 
have shown that PJAC transplants repair full-thickness 
cartilage defects as well as autologous cartilage chips 
[43] and that the transplanted cells survive for at least 3 
months [44]. In animal studies, including two osteochon-
dral defect models and two full-thickness cartilage defect 
models, allogeneic cartilage transplantation resulted in 
good cartilage repair; however, the immune response was 
not investigated (Table 1).

Clinical studies in PJAC transplantation
Particulated juvenile allograft cartilage products 
(DeNovo Natural Tissue [NT], manufactured by Zim-
mer Biomet) have been available since 2007. By 2015, 
more than 8700 patients had been treated with DeNovo 
NT [47]. This product is a minced live cartilage graft 
from a juvenile donor that contains cartilage cells and 
surrounding ECM. Minced cartilage is expected to fur-
ther promote ECM formation and repair by the graft 
itself. However, the data on mid- and long-term clinical 
outcomes are lacking. Several case series have reported 
short-term (2–3 years) improvements in clinical scores 
(KOOS, IKDC, VAS, etc.) and moderate to good filling 
of defects on post-transplantation MRI findings [13–15, 
48–50]. Complications, such as graft hypertrophy, delam-
ination, and displacement have been reported. However, 
no studies have evaluated the immune response or rejec-
tion. The evidence of PJAC transplantation for cartilage 
injuries remains insufficient; however, short-term studies 
have shown promising results (Table 2).

Immunogenicity in iPSC‑derived cartilage
In a study on iPSC-derived chondrocytes, a new resource 
for cartilage regeneration, iPSC-derived chondrocytes 
showed limited HLA expression and did not induce lym-
phocyte proliferation in a mixed lymphocyte assay when 
co-cultured with allogeneic peripheral blood mono-
nuclear cells [51]. Treatment with IFNγ induces the 
expression of major histocompatibility complex (MHC) 
class I, but not MHC class II, in iPSC-derived chon-
drocytes, being similar to juvenile chondrocytes and 
potentially immunogenic under inflammatory condi-
tions [9, 51]. Thus, the immune response of iPSC-derived 

chondrocytes and juvenile chondrocytes in an in  vivo 
inflammatory environment such as osteoarthritis should 
be further evaluated. These results collectively suggest 
that iPSC-derived chondrocytes have similar immu-
nogenic properties to those of juvenile chondrocytes 
in  vitro, so allogeneic iPSC-derived cartilage transplan-
tation can be performed without the use of immunosup-
pressive agents as in PJAC transplantation.

Allogeneic transplantation of iPSC-derived cartilage 
was performed in a primate model by mismatching the 
MHC, which is structurally similar to HLA, to verify the 
immune response in vivo. Cartilages generated from cyn-
omolgus monkey iPS cells (cyiPSCs) were transplanted 
into chondral or osteochondral defects in the femoral 
trochlea of MHC-mismatched monkeys without the use 
of immunosuppressive drugs. Four weeks after alloge-
neic transplantation, although the graft remained intact, 
an accumulation of CD3-positive T cells was observed 
around the graft in osteochondral defects. In contrast, 
in chondral defects, the graft is engrafted without lym-
phocyte accumulation [45, 46]. It has been suggested that 
in chondral defects, the immune response is suppressed 
because there is no contact between the graft and bone 
marrow (Fig. 1c).

Allogeneic iPSC‑derived cartilage transplantation 
for chondral defects
Allogeneic transplantation of cyiPSC-derived cartilage 
for chondral defects showed that the cyiPSC-derived car-
tilage was engrafted and contributed directly to hyaline 
cartilage-rich repair 4 months after transplantation [46].

Integration of the graft and host cartilage is essential 
for successful tissue replacement as it provides stable bio-
logical fixation and load distribution as well as adequate 
mechanotransduction necessary to maintain homeostasis 
[7]. However, cartilage-to-cartilage integration is exceed-
ingly difficult to achieve because of the low metabolism 
of cartilage and the high density of the anti-adhesive 
ECM [52, 53]. Allogeneic cyiPSC-derived cartilage trans-
planted into chondral defects was well integrated with 
the host side cartilage, suggesting that stable biological 
fixation was achieved [46]. Human iPSC-derived carti-
lage has shown capacity for integration, and fibroblast 
growth factor (FGF) signals are involved in this inte-
gration [54]. RNA sequencing analysis showed a higher 
expression of FGF18 in the perichondrium-like mem-
brane of human iPSC-derived cartilage. The addition of 
FGF18 promoted the integration of cartilages, whereas 
the addition of FGFR inhibitors inhibited it. These sug-
gested that FGF18 secreted from the perichondrium-like 
membrane is involved in the integration of the human 
iPSC-derived cartilage [54].
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Articular cartilage is a layered tissue that expresses 
proteoglycan 4 (PRG4), which functions as a lubricant 
in the superficial layer [55–57]. Post-transplantation, 
cyiPSC-derived cartilage showed high expression 
of PRG4 in the superficial layer. These results sug-
gest that cyiPSC-derived cartilage acquires lubri-
cating ability after transplantation and functions as 
articular cartilage [46]. One of the major differences 
between pre- and post-transplantation is that the 
graft is subjected to shear forces associated with knee 
joint motion in vivo after transplantation. Shear forces 
in vivo have been reported to stimulate PRG4 expres-
sion in chondrocytes via cyclic adenosine monophos-
phate (cAMP) signaling [58], and the expression of 
PRG4 in cyiPSC-derived cartilage after transplanta-
tion has been suggested to be associated with shear 
forces. Furthermore, salt-inducible kinase 3 (SIK3) 
has been suggested to be involved in PRG4 expression 
after transplantation [46]. SIKs inhibit nuclear trans-
location of cAMP response element binding protein 
(CREB)-regulated transcription coactivator (CRTC) by 
phosphorylating, thereby repressing CREB activation 
and gene transcription. Among the members of the 
SIK family, SIK3 functions primarily in chondrocytes. 
A recent study demonstrated that deletion of Sik3 fur-
ther increased shear stress-induced Prg4 expression in 
mouse chondrocytes, suggesting that Sik3 negatively 
regulates Prg4 expression [46].

Suppression of immune response during allogeneic 
iPSC‑derived cartilage transplantation into osteochondral 
defects
Allogeneic cyiPSC-derived cartilage transplantation for 
osteochondral defects showed that lymphocytes clus-
tered around the graft 4 weeks postoperatively [45, 46]; 
however, the graft itself remained, suggesting a tempo-
rary immune response rather than complete immune 
rejection. Because chondrocytes express molecules that 
transduce inhibitory signals to T cells [9], these molecu-
lar mechanisms may contribute to the survival of alloge-
neic cyiPSC-derived cartilage in osteochondral defects.

The results of allogeneic iPSC-derived cartilage 
transplantation in a primate model with an immune 
system similar to that of humans suggested that chon-
dral defects are a better indication for allogeneic iPSC-
derived cartilage transplantation than osteochondral 
defects. Regarding osteochondral defects, an immune 
response has been observed in cases of MHC mis-
matches, which remains a long-term concern. One 
solution to prevent immune reactions is to minimize 
rejection by matching the HLA types of the donor and 
host cells. iPSC lines are established from donors whose 

major HLA types are homozygotes [59, 60]. These 
HLA-homo iPSC-derived products matched recipients 
with an identical set of HLA types in one allele. It is 
estimated that an iPSC line homozygous for the most 
frequent HLA types in the Japanese population would 
match 17% of the Japanese population. Therefore, pre-
paring HLA-type homozygous iPSCs could minimize 
the influence of immune rejection [59, 60]. Another 
solution is to genome-edit iPS cells by using techniques, 
such as the CRISPR/Cas9 system [61]. It has been 
reported that B2M−/− cyiPSC-derived cartilage knock-
ing out β2 microglobulin, which does not express MHC 
class I, was transplanted into osteochondral defects 
and showed immune response by NK cells [48]. This 
result is consistent with a previous finding that natural 
killer (NK) cells recognize and eliminate cells that fail 
to express MHC class I molecules [62]. Recent studies 
have established that human iPSCs lack HLA class I 
and II molecules and suppress NK cell attack by HLA-E 
transduction, CD47 overexpression, or PVR knockout 
[63–67]. Currently, the HLA genome-edited iPS stock is 
available for research use [67]. The use of cartilage tis-
sue differentiated from HLA genome-edited iPS cells 
can suppress the immune response to allogeneic trans-
plantation for osteochondral defects.

Safety and costs of allogeneic iPSC‑derived cartilage 
transplantation
Transplantation of autologous iPSC-derived grafts is 
desirable in terms of avoiding immune reactions and 
minimizing the risk of spreading communicable viral 
infections; however, cost and manufacturing lead time 
is not practicable for commercialization. When the 
world’s first autologous transplant of iPSC-derived 
retinal pigment epithelial (RPE) cells was performed, 
the patient had to wait for more than 10 months 
from harvesting skin tissue to RPE sheet transplanta-
tion, which cost nearly 100 million yen [60, 68]. On 
the other hand, allogeneic transplantation approaches 
can reduce the cost and time of the iPSC manufac-
turing process. In the case of allogeneic iPSC-derived 
RPE sheet transplantation using cells from iPSC stock, 
the preoperative waiting period was approximately 1 
month, and the total cost per patient was about one-
fifth of autologous transplantation [60]. Similarly, the 
use of allogeneic iPSC stock reduces cost and time in 
iPSC-derived cartilage transplantation. One of the par-
ticular safety risks of iPSC-derived therapies, including 
iPSC-derived cartilage transplantation, is the concern 
of tumorigenicity because possible contamination of 
undifferentiated iPS cells can give rise to teratoma. 
The reprogramming process of the iPSC and the long 
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culture time for cartilage differentiation could increase 
the potential for malignancy. The risk of tumorigenic-
ity has been thoroughly evaluated in preclinical tests 
including in vitro expression analysis of iPS cell mark-
ers to detect contamination of iPS cells in the cartilage 
and in  vivo tumorigenicity testing in which iPS cell-
derived cartilage is transplanted into immunodeficient 
rats orthotopically for life-long observation. The evalu-
ation of the tumorigenic risk of iPSC-derived cartilage 
using HeLa cells as the reference control suggested 
that the potential benefit of the therapy outweighs the 
risk of tumor formation and the clinical application of 
iPSC-derived cartilage in the knee joint was consid-
ered acceptable [69].

Conclusions
Chondrocyte and cartilage transplantation are treat-
ment options for cartilage defects. Although chon-
drocytes have been shown to be hypoimmunogenic 
in vitro, allogeneic chondrocyte transplantation is con-
troversial due to reports of immunoreactivity in  vivo. 
In contrast, allogeneic cartilage transplantation, as 
performed in clinical practice, tends to show promis-
ing results in the short term; however, the evidence is 
insufficient. There are two types of cartilage defects, 
osteochondral and chondral defects, which may differ 
in their immune responses during allogeneic transplan-
tation. The immune response to chondrocytes can be 
triggered by contact with the bone marrow. Although 
the effect of immune reactions on clinical outcomes 
in osteochondral defects has not yet been determined, 

immune reactions should be controlled to ensure good 
repair. Allogeneic iPSC-derived cartilage transplanta-
tion, a new therapeutic option, could be a good indica-
tion for chondral defects without an immune response. 
HLA type matching or iPSC lines in which HLA genes 
are edited can provide a solution to suppress the 
immune response in osteochondral defects (Fig. 2).
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