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Abstract 

In recent years, extracellular vesicles (EVs) have attracted significant attention as carriers in intercellular communi-
cation. The vast array of information contained within EVs is critical for various cellular activities, such as prolifera-
tion and differentiation of multiple cell types. Moreover, EVs are being employed in disease diagnostics, implicated 
in disease etiology, and have shown promise in tissue repair. Recently, a phenomenon has been discovered in which 
cellular phenotypes, including the progression of differentiation, are synchronized among cells via EVs. This synchro-
nization could be prevalent in widespread different situations in embryogenesis and tissue organization and main-
tenance. Given the increasing research on multi-cellular tissues and organoids, the role of EV-mediated intercellular 
communication has become increasingly crucial. This review begins with fundamental knowledge of EVs and then 
discusses recent findings, various modes of information transfer via EVs, and synchronization of cellular phenotypes.
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Subgroups and markers of EVs
Extracellular vesicles (EVs) are membranous structures 
released by cells and categorized into several subgroups 
with their distinct formation mechanisms; exosomes 
are formed from the budding of endosomes, microvesi-
cles are directly budded from the cell membrane [1], 
and apoptotic bodies are produced by the breakdown of 
apoptotic cells [2, 3] (Fig.  1). Zhang and colleagues fur-
ther defined three distinct subpopulations of exosomes: 
small exosomes (Exo-S, 60–80 nm), large exosomes (Exo-
L, 90–120  nm), and exomeres (< 50  nm). Unlike other 

vesicles, exomeres are not surrounded by a lipid bilayer 
and are not enriched with ESCRT-related molecules, 
making their generation mechanism elusive [4]. It is 
important to note that in this study, the Exo-L fraction 
contains a significant amount of Annexin A1, which has 
been reported as a characteristic marker of microvesicles 
[5]. This suggests the possibility that microvesicles may 
also be present in the Exo-L fraction. Therefore, the risk 
of relying solely on size for exosome fractionation should 
be considered.

Exosomes are generated through both ESCRT (endoso-
mal sorting complexes required for transport)-dependent 
and ESCRT-independent mechanisms (Fig.  2). In the 
ESCRT-dependent mechanisms, the ESCRT complexes 
catalyze the formation of multivesicular bodies (MVBs) 
by invagination of the endosomal limiting membrane [6]. 
Some ESCRT components are suggested to selectively 
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act on subpopulations of MVBs or intraluminal vesicles 
(ILVs) destined to be secreted as exosomes [7]. ESCRT-
independent exosome generation requires the produc-
tion of ceramides by the neutral sphingomyelinase 2 
(nSMase2), which hydrolyzes sphingomyelin into cera-
mides. These ceramides then trigger the budding of exo-
some vesicles into MVBs [8]. Furthermore, the metabolic 
product of ceramide, sphingosine-1-phosphate (S1P), 
is implicated in the cargo sorting and the maturation of 
MVBs [9]. Tetraspanins, Rab proteins, and flotillin-1 are 
shared between both ESCRT-dependent and independ-
ent pathways [10]. On the other hand, within the Rab 
family, Rab31 is involved in cargo sorting, supporting 
ESCRT-independent exosome biogenesis. Additionally, 
Rab31 promotes exosome secretion by inhibiting the 
fusion of MVBs with lysosomes through Rab7 inhibition 
[11].

Once released from cells, distinguishing among the 
various subgroups of EVs, such as exosomes, microvesi-
cles, and apoptotic bodies, becomes difficult. The Inter-
national Society for Extracellular Vesicles (ISEV) has 
proposed categorizing them by size into small EVs (typi-
cally less than 100 nm or 200 nm), and medium/large EVs 
(greater than 200  nm), according to the Minimal Infor-
mation for Studies of Extracellular Vesicles (MISEV2018) 
guidelines [17]. In this review, we generally use the term 
‘EV’ unless specifically referring to a particular subgroup, 
especially exosomes. EV membranes are composed 
of various lipids, and various proteins and glycans are 
expressed on EV membranes. Many lipids and proteins 
are glycosylated. These glycosylation modifications are 

altered by cancer (Fig.  3a) [18, 19]. The expression pro-
files of such components vary depending on the cell types 
even in commonly used EV biomarkers like CD9, CD63, 
and CD81 (Fig. 3b) [20]. Furthermore, heterogeneity has 
been suggested even within EVs derived from the same 
cell type or source, namely the presence of EVs that are 
single positive, double positive, and triple positive for 
CD9, CD63, and CD81 has been reported (Fig. 3c, d) [21, 
22]. Recently, it was found that syntenin-1 is the most 
common and consistently included in the proteome of 
exosomes derived from different cell lines, and was also 
identified in exosomes recovered from various species. 
It has been identified in exosomes from plasma, urine, 
breast milk, and saliva [23]. These results suggest that 
syntenin-1 could be used as a unique biomarker to dis-
tinguish exosomes purified from human biofluids from 
other EVs. Specific integrins expressed on exosomes rec-
ognize specific distant tissues/cells, and tumor-derived 
exosomes taken up by organ-specific cells prepare the 
pre-metastatic niche. Exosomes expressing integrins 
α6β4 and α6β1 bind to fibroblasts and epithelial cells in 
the lungs, governing tumor metastasis to the lung, while 
exosomes expressing integrin αvβ5 specifically bind to 
Kupffer cells, mediating liver metastasis [24].

Contents of EVs
EVs were originally considered to serve the role of expel-
ling unwanted cellular components. Indeed, it has been 
reported that they dispose of defective proteins, unnec-
essary proteins, and harmful DNA, thereby maintaining 
cellular homeostasis [25, 26]. With the recent realization 

Fig. 1 Classification of EVs
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that EVs play a role in intercellular communication [27], 
there has been an explosive increase in reports on their 
roles in various disease states including cancer, analy-
ses of the cargo of EVs released from various cells, and 

their reparative effects on damaged tissues. EVs contain 
mRNA, microRNA (miRNA, miR), non-coding RNA 
(ncRNA), proteins, and lipids [28], with some reports 
suggesting the inclusion of mitochondria [29, 30]. While 

Fig. 2 ESCRT-dependent and ESCRT-independent exosome biogenesis. ESCRT-dependent exosome biogenesis (upper side): ESCRT-0 
recognizes ubiquitinated cargo and binds it to the endosomal membrane [12]. ESCRT-0 recruits ESCRT-I, which along with ESCRT-II stabilizes 
the neck of the forming vesicle. Subsequently, ESCRT-III narrows the neck [13]. At this stage, the cargo is deubiquitinated [14]. Upon recruitment 
of the Vps4-Vga1 complex, the scission of the vesicle neck by ESCRT-III begins, and ultimately ESCRT-III is disassembled [13]. For detailed information 
on the individual subunits of ESCRT, refer to Henne et al. [14] and Williams et al. [15]. ESCRT-independent exosome biogenesis (lower side): a 
nSMase2 catalyzes the conversion of sphingomyelin to ceramide. It is hypothesized that cone-shaped ceramide accumulates locally, leading 
to the formation of ceramide-enriched microdomains that induce membrane curvature [8, 10, 16]. b Ceramide is metabolized to sphingosine, 
which is subsequently converted to sphingosine-1-phosphate (S1P). S1P is involved in the sorting of cargo into ILVs. S1P activates the S1P receptor, 
which helps in the maturation of MVBs [9]. c Rab31 sorts epidermal growth factor receptor (EGFR) into ILVs [10]. Rab31 recruits TBC1D2B, reducing 
the activity of Rab7 and inhibiting the fusion of MVBs with lysosomes. As a result, the inhibition of Rab7 promotes exosome secretion [11]. SM, 
sphingomyelin; Cer, ceramide; Sph, sphingosine; S1P, sphingosine-1-phosphate
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numerous studies report the presence of DNA in EVs, it 
has been noted that the DNA content within EVs is rela-
tively low, and most detected DNA may be adhering to 
the surface of EVs or embedded in non-vesicular struc-
tures [5, 31]. EVs contain only a small amount of miRNA, 
and even the most abundant miRNA is detected at an 
average of only one copy per 121 EVs [32]. In another 
study, specific viral miRNA in EVs from virus-infected 
cells was found at a frequency of only one copy per 300 to 
16,000 EVs [33]. Even EVs derived from the same cell are 
not constant in their contents but would be heterogene-
ous. A proteomic analysis of EVs has revealed the diver-
sity of contents across various subpopulations of EVs 
[34]. The heterogeneity of EV contents should be further 
explored and discussed in future single EV analyses.

EV uptake and information transmission 
mechanisms
EVs communicate with recipient cells through three 
primary mechanisms: (1) uptake of EVs by endocyto-
sis, (2) signal transduction by receptor-ligand binding 

on the cell membrane, and (3) fusion of EVs with the 
recipient cell (Fig. 4). EVs that have reached the surface 
of the recipient cell membrane are taken up by clathrin-
dependent endocytosis, caveolin-dependent endocytosis, 
lipid raft-dependent endocytosis, macropinocytosis, or 
phagocytosis [35]. After being taken up into endosomes, 
there is still little known about how the contents of EVs 
are released into the cytoplasm. A recent study by Joshi 
et  al. demonstrated that the EV membrane fuses with 
the endosome/lysosome membrane under acidic con-
ditions and releases its contents into the cytoplasm 
[36]. While this study did not observe EVs fusing with 
the cell membrane and releasing their contents into the 
cytoplasm, such a mechanism cannot be ruled out. As 
another example, Polanco et  al. demonstrated a mecha-
nism by which EVs containing tau protein, thought to be 
involved in Alzheimer’s disease, escape from endosomes. 
After EVs were taken up into endosomes, the degrada-
tion of endolysosomes increased the permeability of the 
endolysosomes, causing tau to leak into the cytoplasm 
and inducing tau aggregation [37]. Conversely, there are 

Fig. 3 Glycosylation modification and tetraspanins on the surface of EVs. a Glycosylation modifications are altered in cancer cells. (Based 
on Shimoda et al. [18]). b Natural killer (NK) cell-derived EVs contain CD63 and CD81, but not CD9. On the other hand, platelet-derived EVs contain 
CD9 and CD63 but scarcely contain CD81 [20]. c There are HeLa cell-derived EVs that are CD9 single positive, CD63 single positive, and double 
positive [21]. d In amniotic fluid-derived EVs, some contain only one CD9, CD63, or CD81, while others contain multiple of them [22].
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viewpoints challenging the efficiency of EVs in delivering 
cargo to the cytoplasm of recipient cells, suggesting that 
the cargo might not be functional or that the process is 
highly inefficient [33, 38]. Approximately 50,000 EVs per 
cell were incubated for 4 h, but the fusion of EVs with the 
plasma membrane or endosomal membrane of recipi-
ent cells was either extremely low or not detected [33]. 
In experiments using EVs incorporated with the virus-
derived fusion protein VSV-G (vesicular stomatitis virus 
glycoprotein), which dramatically increases the efficiency 
of cargo transport to the cytoplasm, approximately 
100,000 EVs per cell were incubated for 24 h, yet no func-
tion of miRNA was observed [33]. This inefficiency might 
be attributed to the low copy number of miRNA present 
in EVs. Proteins such as β-lactamase reporter and tetra-
cycline transactivator, which were overexpressed, were 
clearly observed to function only when transported by 

EVs incorporated with VSV-G [33, 38]. These results 
suggest that a significantly larger amount of EVs or engi-
neered EVs with improved membrane fusion capability 
may be required for effective cargo delivery. Addition-
ally, instances of signal transduction independent of EV 
uptake have been documented. One of the earliest exam-
ples of signal transduction by receptor-ligand binding on 
the cell membrane involves EVs derived from B cells or 
dendritic cells that could present antigens to T cells and 
induce a specific antigenic response [39, 40]. It was dis-
covered that angiopoietin-2 on the surface of EVs binds 
to the Tie2 receptor on recipient cells and activates the 
signal [41]. Laminin and fibronectin on EVs released 
from the inner cell mass (ICM) interact with integrins 
on the surface of the trophoblast, promoting trophoblast 
migration and embryo implantation [42].

Fig. 4 Three ways in which EVs send information to recipient cells. (Based in part on van Niel et al. [35])
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The multifaceted roles of EVs in molecular 
dynamics and signaling
There are several instances that the dynamics of mol-
ecules change when they are transported by EVs, 
compared to when soluble factors or ligands exist indi-
vidually. Regarding the distribution of morphogens, the 
widely accepted model of gradient formation by passive 
diffusion cannot explain the specificity to certain target 
cells, the dynamics of long-range distribution, and the 
formation of intracellular and extracellular gradients 
[43]. It has been shown that Hedgehog (Hh) is secreted 
in an ESCRT-dependent manner within EVs moving 
along cytonemes (a type of filopodia) to create a gradi-
ent within Drosophila tissues [44, 45]. Additionally, it 
has been reported that Hh is transported long distances 
by EVs through cytonemes [44]. This mechanism pro-
duces a distribution of Hh different from that by passive 
diffusion. Some Wnts and Hhs undergo lipid modifica-
tions (palmitoylation or cholesterol modification) that 
are essential for signal transmission but can impair their 
free diffusion in the extracellular environment. Therefore, 
packaging in vesicles is required for the long-range action 
of lipid-modified morphogens [46, 47]. Notch is a trans-
membrane protein, and its intracellular domain is cleaved 
and downstream signaling is activated after binding to 
Delta on the surface of directly adjacent cells. Alterna-
tively, a model has been proposed in which Delta on the 
surface of EVs triggers the activation of Notch signaling 
in the recipient cell [48, 49], suggesting the possibility of 
activating Notch signaling in distant cells without direct 
contact. Within the mouse embryo, rotating cilia create a 
fluid flow. By this fluid flow, EVs containing Sonic hedge-
hog and retinoic acid are transported to the left side of 
the embryo, influencing the determination of the left–
right axis [50].

Synchronization of cell differentiation through EVs
During development, cells coordinate their differentia-
tion in a way that must align their fate determination and 
synchronize their differentiation stages with those of sur-
rounding cells. While numerous soluble factors induc-
ing differentiation have been reported, there are many 
instances where the cells producing these factors and 
the cells induced by them belong to distinct lineages. For 
example, during vasculogenesis in early development, 
vascular endothelial growth factor (VEGF) is a potent 
soluble factor that induces differentiation from meso-
derm to vascular endothelial cells, yet its cell source is the 
endoderm [51]. Another example can be seen in chicken 
embryos, where bone morphogenetic protein (BMP) pro-
duced by the dorsal aorta prompts the differentiation of 
neural crest cells into adrenal medulla cells [52]. It has 

been challenging to explain the mechanism by which 
cells of the same lineage synchronize their differentia-
tion with surrounding cells through soluble factors. Our 
recent research has unveiled a novel mechanism for how 
neighboring cells synchronize their phenotypes with each 
other and this synchronization is mediated through EVs 
[53]. Our discovery centers on the synchronization of 
cells in differentiation, particularly focusing on the coor-
dination of fate determination towards mesoderm and 
the synchronization of the differentiation progression. In 
order to prove this, it was necessary to create an inten-
tional gap in the degree of differentiation progress. For 
this purpose, we used a method we previously reported, 
where we intentionally accelerated the differentiation 
of embryonic stem cells (ESCs) into mesodermal cells 
by activating Protein Kinase A (PKA) [54]. In the estab-
lished ESC line (PKA-ESCs), we can express activated 
PKA in a drug-controlled manner (Tet-OFF). When we 
culture Control-ESCs alone, which has the same differen-
tiation speed as the wild type, less than 20% of the cells 
become Flk1 positive mesoderm cells only by day 4.5. On 
the other hand, when we culture PKA-ESCs alone and 
activate PKA under doxycycline-free (Dox-) conditions, 
more than 20% of Flk1 positive mesoderm cells in total 
cells appear from day 2.5 of differentiation. When we cre-
ate a mixed aggregate of PKA-ESCs and Control-ESCs 
and co-culture them under differentiation conditions, 
the differentiation of Control-ESCs accelerates to catch 
up with PKA-ESCs, reaching a mesoderm positivity rate 
of 40% at day 3.5. We consider that this phenomenon 
can be defined as ‘phenotypic synchronization of cells 
(PSyC)’ (Fig.  5) [53]. When we added an EV inhibitor 
(an inhibitor of nSMase2 essential for exosome synthe-
sis), Manumycin A or GW4869, to the mixed aggregate 
of PKA-ESCs and Control-ESCs, only the differentia-
tion of Control-ESCs was inhibited. When we collected 
EVs from PKA-ESCs (PKA-ESC-EVs) and added them 
to Control-ESCs during a single culture, mesoderm dif-
ferentiation was strongly promoted. When we added 
PKA-ESC-EV to mouse embryos and performed ex vivo 
culture, beating cardiomyocytes, a mesodermal deriva-
tive, was induced. To analyze the functional molecules 
contained in PKA-ESC-EV, we performed microRNA 
sequencing and found that miR-132 was particularly 
potent. We found that when artificial nanoparticles con-
taining miR-132 were applied to cells, they induced dif-
ferentiation into mesoderm. Moreover, when added to 
mouse embryos, they induced the differentiation of car-
diomyocytes. These results demonstrate that it is possible 
to use the molecules inside EVs for cellular phenotypic 
synchronization. This synchronization was notably less 
efficient in a co-culture system using a transwell, which 
created a physical distance between PKA-ESCs and 



Page 7 of 11Minakawa and Yamashita  Inflammation and Regeneration            (2024) 44:4  

Control-ESCs. Also, when we labeled PKA-ESC-EVs 
with a fluorescence probe, we found that the efficiency 
of EV reaching Control-ESCs was markedly lower in the 
transwell system compared to mixed aggregate and 2D 
co-culture. This could be due to the fact that EVs should 
be immediately taken up by nearby cells as soon as they 
are released. From these observations, it was inferred 
that the delivery of EVs, especially the exchange of EVs 
between adjacent cells, is important for the phenotypic 
synchronization. Currently, we are exploring a new mode 
of cellular communication, focusing on the direct vesi-
cle exchanges between adjoining cells, primarily using 
live imaging. Another interesting finding is that when we 

added PKA-ESC-EVs, Control-ESCs differentiated into 
mesoderm, but at this time, the PDGFRα positivity rate 
increased depending on the concentration of EVs, while 
the Flk1 positivity rate tended to decrease. This suggested 
that EVs have the potential to fine-tune the orientation 
towards the axial mesoderm within the mesoderm. EVs 
have been found to contain tens of thousands of entities, 
including RNAs, ncRNAs, proteins, and more. Consid-
ering the additional presence of lipids, DNA fragments, 
surface ligands, and glycans, we believe that EVs can 
share high-order information that cannot be achieved by 
single molecules.

Fig. 5 Schematic of the PSyC mechanism including EV secretion and miR-132 delivery. From fast-differentiating cells, miR-132 is transferred 
through EVs to surrounding recipient cells, where it inhibits Spry1 and Rasa1 to transmit the signal. As a result, the differentiation mechanism 
is synchronized in the fast-differentiating cells and recipient cells [53]

Table 1 Instances where cells receiving EVs acquire phenotypes similar to those of the donor cells

Donor cells Recipient cells Effects References

PKA-ESCs (Fast-differentiating ESCs) Control-ESCs (Slow-differentiating ESCs) Promotion of differentiation and catching up to the 
same stage of differentiation as PKA-ESCs

 [53]

Potent commitment to the mesodermal lineage, 
similar to PKA-ESCs

Differentiated NSPCs NSPCs Neural differentiation  [55]

Neural cells MSCs Induction of neuron-like morphology  [56]

Corneal epithelial cells Conjunctival epithelial cells Increase in marker levels of corneal epithelial cells  [57]

Conjunctival epithelial cells Corneal epithelial cells Increase in marker levels of conjunctival epithelial 
cells

Hair papilla cells Adipose-derived stem cells Induction of hair papilla-like characteristics  [58]

Macrophages Naive monocytes Macrophage differentiation  [59]

ESCs Muller cells De-differentiation  [60]

Cardiomyocytes MSCs Induction of cardiac gene expressions  [61]

ESCs differentiating into cardiomyocytes Fibroblasts Supporting cardiac differentiation  [62]
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Phenomena that imply the involvement of phenotypic 
synchronization in differentiation have been reported 
in various environments and cell types (Table 1). When 
EVs collected from differentiated NSPCs (neural stem 
progenitor cells) were added to proliferating NSPCs, dif-
ferentiation was induced [55]. Mesenchymal stem cells 
(MSCs) received daily treatments for a week with EVs 
from the neural cell line PC12. After treatment with 
EVs from PC12 cells, the MSCs exhibited a neuron-like 
morphology, and the expression of genes and proteins of 
neuronal markers increased [56]. In ex vivo experiments, 
the addition of EVs derived from corneal epithelial cells 
increased the expression levels of corneal epithelial 
markers, while the addition of EVs derived from con-
junctival epithelial cells increased the expression levels of 
conjunctival epithelial markers [57]. When EVs derived 
from hair papilla cells were added to adipose-derived 
stem cells, the cells became more likely to acquire hair 
papilla-like characteristics [58]. The addition of mac-
rophage-derived EVs to naive monocytes induced differ-
entiation into macrophages [59]. When EVs derived from 
ESCs were supplied to Müller cells, these cells changed 
to a de-differentiated precursor cell phenotype [60]. 
Cardiac-derived EVs have been identified to enhance the 
expression of specific cardiac-associated genes, namely 
GATA-binding protein 4 (GATA4), T-box transcription 
factor (Tbx5), NK-2 transcription factor related, locus 5 
(Nkx2.5), and cardiac troponin T (cTnT), within human 
mesenchymal stem cells (hMSC) [61]. Utilizing EVs 
extracted from embryonic stem cells (ESCs) undergoing 
cardiac differentiation has facilitated the direct repro-
gramming of fibroblasts into induced cardiomyocyte-like 
cells, with success rates above 60% [62].

Synchronization and maintenance of cellular 
phenotypes via EVs
We believe that EVs should also contribute to the main-
tenance of cellular homeostasis, mainly intrinsic prop-
erties, within tissues, not just differentiation. Each cell 
constantly exchanges information with its surround-
ings. One example is the complementation of missing 
molecules. When endothelial cells with a knocked-out 
gene were cultured with adipocytes, it was observed that 
mRNA of the knocked-out gene was supplied from adi-
pocytes to endothelial cells, compensating for the defi-
ciency [63]. There have also been reports of cases, i.e. 
EVs from undifferentiated cells improve the quality of 
undifferentiated cells [64], in the co-culture of porcine 
parthenogenetic embryos and cloned (nuclear transfer) 
embryos, mRNA of pluripotency genes was delivered 
via EVs, improving the in  vitro development of cloned 
embryos [65]. We hypothesize that there may be diseases 

that arise from the breakdown of mechanisms to main-
tain such homeostasis.

Future perspectives
Numerous co-culture experiments of different cell 
types have been conducted so far [66–68], and while 
changes in cellular phenotypes have been observed, 
the molecular mechanisms are complicated and many 
remain unclear. Not only between different cell types 
but also between the same cell types, there should be 
a great deal of intercellular communication via EVs, 
including mechanisms like synchronization, even if 
they are not immediately apparent. We expect the 
molecular mechanisms contributed by EVs to become 
increasingly clear in the coming years. Furthermore, 
recent years have seen rapid progress in research on 
organoids, three-dimensional structures composed of 
multiple types of cells, and assembloids, that connect 
organoids from different brain regions [69]. We antici-
pate that such research will enable the modeling of 
complex intercellular interactions, further deepening 
our understanding of intercellular communication via 
EVs in vivo. The roles and importance of vesicle-medi-
ated intercellular information transfer are expected to 
gain further validation in the near future.
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