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Abstract 

Inflammatory responses are known to suppress neural regeneration in patients receiving stem cell-based regenera-
tive therapy for spinal cord injury (SCI). Consequently, pathways involved in neurogenesis and immunomodulation, 
such as the hepatocyte growth factor (HGF)/MET signaling cascade, have garnered significant attention. Notably, 
various studies, including our own, have highlighted the enhanced recovery of locomotor functions achieved in SCI 
animal models by combining HGF pretreatment and human induced stem cell-derived neural stem/progenitor cell 
(hiPSC-NS/PC) transplantation. However, these studies implicitly hypothesized that the functionality of HGF in SCI 
would be time consistent and did not elucidate its dynamics. In the present article, we investigated the time-course 
of the effect of HGF on SCI, aiming to uncover a more precise mechanism for HGF administration, which is indispen-
sable for developing crystallizing protocols for combination therapy. To this end, we performed a detailed investi-
gation of the temporal variation of HGF using the RNA-seq data we obtained in our most recent study. Leveraging 
the time-series design of the data, which we did not fully exploit previously, we identified three components in the 
effects of HGF that operate at different times: early effects, continuous effects, and delayed effects. Our findings sug-
gested a concept where the three components together contribute to the acceleration of neurogenesis and immu-
nomodulation, which reinforce the legitimacy of empirically fine-tuned protocols for HGF administration and advo-
cate the novel possibility that the time-inconsistent effects of HGF progressively augment the efficacy of combined 
therapy.
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Background
Human induced stem cell (hiPSC)-derived neural stem/
progenitor cells (hiPSC-NS/PCs) have served as invalua-
ble tools for investigating the intricate molecular dynam-
ics of developing human brains in vitro [1, 2]. In addition 
to their role in models, these cells also have potential as 
powerful materials in regenerative therapy for the cen-
tral nervous system (CNS), which is considered uncur-
able once it is damaged. For the clinical application of 
hiPSC-NS/PCs in regenerative medicine in the CNS, it 
is crucial to elucidate the mechanism of neuronal devel-
opment and engineer an effective approach for inducing 
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differentiation [2, 3]. In our prior studies, we identified 
γ-secretase inhibitors (GSIs) as key compounds that 
trigger the neuronal differentiation of neural stem cells 
(NSCs) and elucidated the underlying mechanism [4]. 
In addition to in  vitro experiments, we have focused 
on developing therapies for spinal cord injury (SCI) via 
hiPSC-NS/PC transplantation, and GSI treatment has 
been adopted in the protocols of preclinical studies [5, 
6], which led to our latest advancement—the first human 
clinical trial of hiPSC-NS/PC transplantation in subacute 
SCI patients [3]. However, several studies have suggested 
that there is a negative correlation between the prognosis 
of NS/PC transplantation and the severity of the injury 
[7]. Moreover, cytotoxic environments, notably inflam-
matory responses, threaten to block neural regeneration 
by compromising the survival of transplanted cells [8, 9].

Using various animal models, previous studies have 
identified hepatocyte growth factor (HGF) as a desir-
able substance that induces the recovery of motor 
function after SCI by mediating neurogenesis, neuro-
protection, angiogenesis and inflammatory responses 
[10–12]. In our latest report, we showed that the com-
bination of HGF pretreatment and hiPSC-NS/PC trans-
plantation enhanced locomotor functional recovery in a 
rat model of SCI [13], indicating the potential of HGF in 
SCI therapy. HGF is a growth factor that promotes tis-
sue regeneration via the MET receptor [13–16]. HGF/
MET signaling stimulates various signal transduction 
pathways, such as the SRC/focal adhesion kinase (FAK) 
pathway, the p120/signal transducer and activator of 
transcription (STAT) 3 pathway, the phosphoinositide-3 
kinase (PI3K)/Akt pathway, and the Ras/MEK pathway 
[17]. These pathways contribute to the reported effects 
of HGF on immunomodulation, cell proliferation, and 
neuronal differentiation [13, 16, 18–21]. In our previous 
report, we analyzed RNA-seq data from HGF-treated rat 
SCI models and controls. These models were sacrificed 
at two distinct time points to demonstrate the favorable 
effects of HGF on neuronal differentiation. However, we 
did not perform timewise comparisons in that study, as 
investigating the temporal variation in the effect of HGF 
was not our focus at that time. A longitudinal assessment 
of these data is now considered crucial, as it would not 
only reveal whether the effects of HGF are consistent 
over time but also provide deeper insights into the mech-
anism of HGF. These findings are particularly essential 
for developing combination therapy comprising HGF 
pretreatment and hiPSC-NS/PC transplantation since 
expanding our knowledge will refine and optimize HGF 
pretreatment protocols.

In the present study, we utilized the RNA-seq data 
from our previous study to determine whether the effects 
of HGF change over time. However, the changes in 

HGF-related effects over time and in the injured spinal 
cord are closely related. HGF/MET signaling serves as a 
hub for downstream cascades, and HGF evokes diverse 
functional changes in cells depending on the surround-
ing context. Where samples exhibit temporal changes, 
observers may struggle to discern whether alterations 
are due to the passage of time or changes in the effect of 
HGF. When comparing samples with or without HGF 
at several time points, the interdependence of sample 
changes and the effects of HGF complicate differen-
tiation. To address this, we initiated our investigation 
by verifying the influence of HGF on the progression of 
injury to the spinal cord.

Results
The two axes: the timewise trajectory of SCI 
and the function of HGF
Before enumerating the results, we will clarify what was 
observed in the RNA-seq data analysis conducted in our 
previous work [13] and reiterate our specific aims for this 
study. In our past study, we generated severe contusion 
SCI models immediately followed by continuous intrath-
ecal administration of recombinant human HGF (or PBS 
for control) for either two days or seven days (Fig. S1A), 
and RNA-seq data from those samples demonstrated 
that HGF enhanced neurogenesis-related Gene Ontol-
ogy (GO) terms and suppressed inflammation-related 
GO terms at both Day 2 and Day 7 [13]. Although we 
observed slight differences in the detailed composition 
of inflammatory GO terms at Days 2 and 7, semantically 
similar terms were identified that promote neurogenesis 
and suppress the inflammatory response, fibrosis, and 
gliosis [13]. Since the RNA-seq data analysis was only a 
part of our previous study (Suematsu et al. 2023), which 
aimed to elucidate the efficacy of the combined therapy 
of hiPSC-NS/PC transplantation and prior HGF admin-
istration, with the goal of providing an overview of the 
effects of HGF (Fig.  1A), the possibility of temporal 
variation in the effect of HGF was not considered. Even 
modeling the state transition of spinal cords as discrete 
for simplicity, HGF’s effect can be considered as a func-
tion that maps one state to another, hence, samples’ reac-
tions to HGF (i.e., the pair of the original state and the 
mapped state) can differ depending on the current states 
of the samples (Fig. S1B). Therefore, HGF can have dif-
ferent effects on SCI samples depending on time points 
(e.g., early effects, continuous effects, and delayed effects 
in Fig. 1B) unless the effect of HGF is singular and steady 
(as implicitly hypothesized in previous studies). To pro-
vide a time-resolved description of the mechanism of 
HGF, we first assessed whether the SCI samples under-
went similar transcriptomic transitions independent of 
HGF (otherwise, the time course and the effect of HGF 
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would not be separable in this dataset); then, we exam-
ined whether the effect varied over time (Fig. 1A). Using 
an analogy of vectors that deviates somewhat from math-
ematical rigor for the sake of intuitive explanation, we 
considered RNA-seq data as a vector space with genes as 
the basis vectors, where orientations correspond to bio-
logical semantics. This interpretation is inspired by GO 
terms, which convey abstract directions of biological 
functions with collective genes. Given this analogy, our 
goals can be reformulated as follows: 1) to test whether 
the effect of time on the control samples t and the HGF-
treated (HGF +) samples t∗ shares a common directional-
ity (i.e., t∗ = αt where α is a scalar, referring to t ∝ t

∗ ); 
and 2) if the effect of HGF on Day 2 and Day 7 ( h(2) and 
h(7) , respectively) shows collinearity (i.e., h(7) = βh(2) 
where β is a scalar, referring to h(2) ∝ h(7) ). Rep-
resenting the Day 2 control samples as C , the Day 7 
HGF + samples can be denoted as C + h(2)+ t

∗ and 
C + t + h(7) (Fig. S1C). Assuming that t ∝ t

∗ provides 
insight into the temporal variation in the effect of HGF, 
h(7)− h(2) = (α − 1)t ∝ t ∝ t

∗ will be derived from 
C + h(2)+ t

∗ = C + t + h(7) (without this assump-
tion, h(7)− h(2) = t

∗ − t remains unsolvable). Hence, 
we decided to consider t and t∗ before h(7)− h(2) , our 
primary goal, to take advantage of the structural sim-
plicity derived from t ∝ t

∗ . We reiterate that our con-
ceptualization involves an analogy to vectors, where we 
deliberately sacrifice some mathematical rigor for the 
sake of providing an intuitive explanation. In the Sup-
plemental Information, we provide detailed descriptions 
of these vectors and include clarifying statements for 
the hypotheses introduced with occasionally ill-defined 
notations. Regarding practical method of comparisons, 
we utilized Venn diagrams to visualize the overlaps in 
sets of upregulated/downregulated genes for different 
experimental conditions (Fig. 1A). Further details on this 
scheme will be explained later.

In the first step of the data analysis, we visualized the 
dataset via principal component analysis (PCA) of the 
logarithmic-transformed transcript per million (TPM) 
data (Fig. 1C), and we filtered out upregulated and down-
regulated genes for each case by setting a threshold of ± 
0.8 for Cohen’s d values, as this parameter indicates that 
the effect size of the difference in means between the two 
given conditions is large [22]. Given that homoscedas-
ticity among all four conditions was not assured for all 
genes, we adopted Cohen’s d value instead of fold change 
as an indicator of upregulation/downregulation because 
it can balance the means and the standard deviations. 
Cohen’s d values were displayed along with the compo-
nents (i.e., eigenvectors) of the principal components 
(PCs) on the vertical axes for visualization purposes 
(Fig. 1D,E). This presentation was adopted because PC1 
appeared to align with the time axis, while PC2 seemed 
to correspond to the effect of HGF (Fig. 1C). The top 15 
and the bottom 15 genes according to the PC1 (and/or 
PC2) component values are shown in Fig. S1D for ref-
erence. Longitudinal comparisons were made between 
Day 2 and Day 7 to identify upregulated and downregu-
lated genes, respectively, in both the HGF + and control 
groups (Fig.  1D). Cross-sectional comparisons between 
HGF + and control cells were also conducted at the indi-
cated time points (Fig. 1E). The first set of comparisons 
aimed to capture temporal changes in the HGF + /control 
groups, which was essential for assessing their similar-
ity. In contrast, the second set included snapshots of the 
effect of HGF, emphasizing longitudinal variations.

Similarities in the timewise trajectory indicated that HGF 
enhances neuronal development without drastically 
altering cell fate
Next, we evaluated whether the SCI samples exhibited 
similar transcriptomic trajectories irrespective of HGF 
administration. This was an inevitable step for evaluating 

Fig. 1  The two pivotal foci of this study: the time axis and the effect of HGF. A Schematics illustrating the scopes of the comparative analyses. 
Suematsu et al. provided an overview of the effect of HGF across a time series (left). To explore its dynamics along the time axis, we conducted 
“multidimensional” comparisons. First, we identified upregulated (or downregulated) genes in terms of the comparative factor (X) and quantified 
the overlaps of those genes with the other factor (Y) using Venn diagrams. This procedure enabled us to visualize the degree of similarity (or 
difference) in terms of X between the two series that are different in Y. We measured the overlap of timewise upregulation/downregulation 
between HGF + and control samples to juxtapose their timewise trajectories (center) and the overlap of gene regulation driven by HGF on Days 2 
and 7 to visualize the temporal shifts in the HGF effect (right). B Conceptual schematic for the temporal variation in the effect of HGF. In addition 
to some time-consistent effects (denoted as continuous effects), effects that appear temporarily in the early stages (denoted as early effects) 
and effects that surge in the later stages (denoted as delayed effects) can be considered. C Overview of the dataset: The marker colors reflect 
the status of HGF administration, while the marker shapes indicate the time points. Each axis is a PC with a labeled contribution rate. D Scatter plots 
of genes (horizontal axis: Cohen’s d values; vertical axis: PC1 components) for HGF + (top) and control (bottom) rats. We defined the upregulated 
genes as those with a Cohen’s d > 0.8 and the downregulated genes as those with a value < 0.8. Note that the upregulated genes were enriched 
in Day 7 samples, and the vertical axis was not related to gene selection (for visualization purposes only). E Scatter plots of genes (horizontal axis: 
Cohen’s d values; vertical axis: PC2 components) for Day 2 (top) and Day 7 (bottom). The same definitions of the upregulated/downregulated genes 
as in (D) were applied. Note that the upregulated genes were enriched in HGF + samples, and the vertical axis was for visualization purpose only

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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the temporal variation in the effect of HGF because the 
assessment would be simpler if the baseline transcrip-
tomic changes over time were the same in HGF + and 
control samples than if they were inconsistent.

First, we quantified the number of overlapping upregu-
lated/downregulated genes (selected at Fig. 1D) between 
the HGF + group and the control group, and the inter-
section of the Venn diagrams contained the most genes 
in both categories (Fig. 2A), indicating that the majority 
of the transcriptional changes observed over time were 
shared. The results of enrichment analyses conducted 
on the gene subsets (Fig.  2A: HGF + , orange; common 
(com.), green; and control, blue) also showed that the 
common subset had the largest number of GO terms 
(Fig. 2B), consistent with the results in Fig. 2A.

The 30 most significant GO terms (Fig.  2C–D) sug-
gested that a variety of functions, including nervous 
system development, were promoted and that a wide 
range of processes, such as the immune response, were 
suppressed in the baseline dynamics of the SCI models. 
The 30 most significant GO terms for other subsets of 
upregulated/downregulated genes were also provided 
for reference (Fig. S2A–D). These results indicated the 
presence of assistive GO terms (e.g., “synaptic signaling” 
in the upregulated GO terms) in the HGF + gene sub-
set, which could be considered to work in harmony with 
genes in the common subset. In contrast, the existence 
of adversarial GO terms (e.g., “immune response” in the 
upregulated GO terms and “trans-synaptic signaling” in 
the downregulated GO terms) was evident in the control 
gene subset, suggesting a counteraction toward the GO 
terms of the common subset.

Given that there are aids and interventions for base-
line temporal reactions, a better understanding of these 
reactions helps us directly visualize the magnitude of 
those tendencies described in GO terms. To this end, 
we mapped the GO terms to the gene symbols so that 
we could count the numbers of GO term-related genes 
(GOTRGs) in the three subsets of genes, HGF + , com., 
and control. We identified the 18 GO terms that are 
unique to the com. subset and the number of corre-
sponding GOTRGs (Fig.  2E); these 18 GO terms corre-
sponds to the green region of the upper Venn diagram 
of Fig. 2F and are components of the top 30 significantly 
upregulated GO terms (Fig. 2C). As shown in Fig. 2E, the 
com. subset had the largest number of GOTRGs for all 
18 GO terms compared to the other subsets, which sug-
gested that the contribution of HGF + administration to 
the common GO terms was supplemental and that the 
GOTRGs responsible for the baseline shifts were inclu-
sively observed in both the HGF + and control samples. 
Here we emphasize that the numbers of GOTRGs were 
by far the greatest in com. for all 18 GO terms, which 

results are not self-evident even if the GO terms were 
selected exclusively from the set of upregulated GO 
terms for com. when we take the structural complex-
ity of the relationships of gene symbols and GO terms 
accounted. Gene symbols and GO terms are completely 
different domains and their elements are intertwined in 
many-to-many relations, and enrichment analysis scoops 
GO terms that seem statistically likely for the given set 
of the gene symbols (i.e., DEGs) while other GO terms 
tagged with those gene symbols can be ignored. There-
fore, there are two possibilities that can be unintuitive: 1) 
some DEGs that play various roles in multiple contexts 
can be tagged with GO terms that seems intuitively irre-
sponsible; and 2) some GO terms can be identified for 
different DEG groups. Given those pitfalls, we believe it 
critical to double-check the GO terms with the number 
of GO terms and the number of GOTRGs for summariz-
ing biological phenomena behind the samples. This time, 
it is natural that com. has the largest number of GOTRGs 
for GO terms suggested exclusively in the genes in com., 
yet the existence of drastic gaps in all 18 GO terms is 
still noteworthy. As the interpretations from Fig.  2A, 
B, E do not contradict to each other, we could conclude 
that the dominant biological reactions taken place along 
with the time-course were quite common regardless of 
HGF. For additional information, the top 30 significantly 
downregulated GO terms were also associated with the 
downregulated genes in the com. subset (Fig. S2E), which 
indicated that the baseline suppression was almost con-
sistent regardless of HGF administration.

In summary, although HGF partially assisted in base-
line temporal reactions, these changes were almost inde-
pendent and commonly observed in HGF + and control 
samples. In other words, we could assume that almost the 
same baseline timewise transcriptomic variations were 
observed in both the HGF + and control groups. Given 
these results, simple comparisons of the effect of HGF at 
different time points were conducted to reveal the tem-
poral variation.

Longitudinal observation of gene expression suggested 
that HGF can trigger, maintain, and reinforce neuronal 
differentiation over a specific time course
Next, we elucidated the temporal variation in the effect 
of HGF, which was overlooked in the report by Suematsu 
et  al., by longitudinal comparisons of cross-sectional 
transcriptomic variations caused by HGF to highlight the 
difference in the effects of HGF between these two time 
points.

Like in the previous section, we quantified the 
number of overlapping upregulated/downregulated 
genes (selected in Fig.  1E) between Day 2 and Day 7. 
While the com. subset had the most upregulated and 
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Fig. 2  SCI samples exhibited similar trajectories regardless of HGF status. A Venn diagrams of upregulated genes (left) and downregulated genes 
(right). B Venn diagrams of upregulated (left) and downregulated (right) GO terms. C, D The 30 most significant GO terms for the (C) upregulated 
genes and (D) downregulated genes. E Numbers of GOTRGs in each gene subset. The top 18 significantly upregulated GO terms unique 
to the common gene subset (denoted as com.) were selected. F Venn diagrams of the top 30 upregulated GO terms (top) and downregulated GO 
terms (bottom)
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downregulated genes, as shown in Fig.  2A, the propor-
tions of elements were relatively even for each sub-
set (Day 2, yellow; Const., gray; and Day 7, magenta in 
Fig.  3A). This indicated the existence of three major 
effects of HGF: early effects were exclusively observed on 
Day 2, continuous effects occurred constantly from Day 2 
to Day 7, and delayed effects ultimately appeared on Day 
7. The Venn diagrams of the GO terms supported this 
concept, as they had nonnegligible numbers of elements 
in each section (Fig.  3B–C). Although one might ques-
tion the subtleness of the boundary between the state 
where a single subset is dominant and the state where 
multiple subsets have sufficient elements, it is crucial to 
emphasize that the Const. subset was not very dominant, 
which indicated that the effect of HGF was not consist-
ent across time. Hence, these results affirmed the time-
varying aspects of the effect of HGF.

Next, we identified the top 30 significant GO terms for 
Day 2, Const., and Day 7 (Fig. S3A–F). These results did 
not contradict those of Suematsu et  al.; neurogenesis-
related GO terms were upregulated, and inflammation-
related GO terms were downregulated. To elucidate the 
mechanism of HGF through a time-resolving analysis 
and establish a logical connection between our concepts 
of time variation and Suematsu et  al.’s in  vivo experi-
ments, we investigated the most prominent effects of 
HGF on SCI samples. Therefore, we considered the GO 
terms at the innermost intersection of the Venn diagram 
depicting the top 30 significant GO terms (Fig.  3C–E). 
The numbers of GOTRGs in the gene subsets showed 
consistent trends, with the lowest numbers occurring on 
Day 2 and increasing incrementally until Day 7 (Fig. 3D–
E). These findings suggested that a limited number of 
genes triggered the reaction of HGF as an early effect, an 
intermediate number of genes contributed to maintain-
ing a continuous effect, and a population of genes rein-
forced them as a delayed effect.

Discussion
In this study, we conducted multidirectional compara-
tive analyses on two occasions, revealing two cardinal 
findings. First, we identified a consistent pattern of basal 
temporal variations in SCI samples, irrespective of HGF 
treatment status. Second, we identified the common-
ality of basal temporal variations in SCI samples across 

different HGF administration statuses and the time-var-
ying aspects of the effect of HGF based on the concept 
that different genes exhibit activity at different times. 
Our study revealed that the impact of HGF, which was 
also observed by Suematsu et  al. [13], is significantly 
enhanced by its delayed effects. Consequently, admin-
istering HGF for a period of 7  days may be more effec-
tive than a 2-day regimen. We found that some genes 
were consistently upregulated on both Day 2 and Day 7, 
which was consistent with the findings of our prior study. 
In contrast, we identified a smaller subset that was ini-
tially upregulated on the second day but did not main-
tain elevated expression levels through the seventh day. 
Furthermore, we observed a larger set of genes whose 
expression was upregulated specifically on Day 7, sug-
gesting a delayed response. These findings might indicate 
that the initial upregulation of the smaller subset triggers 
subsequent upregulation in the larger set, resulting in a 
delayed positive effect. This discovery, previously unre-
ported, highlights the intricate dynamics uncovered in 
our research.

Our findings may provide further insight not only into 
SCI but also into several other neurological disorders 
regulated by MET and its downstream signaling cas-
cades. For example, while the association between MET 
and schizophrenia was reported in a genome-wide asso-
ciation study (GWAS) [23] in 2010, in the same year, 
Cannon criticized the results for their inconsistency 
with other GWAS reports, suggesting the potential false 
positivity of the correlation between MET and schizo-
phrenia due to loss of statistical power [24]. In addition, 
Cannon emphasized that the insufficiency of co-occur-
rence between MET and lower intellectual functioning 
supports its unrelatedness to the etiopathophysiology of 
schizophrenia. Although our findings would not directly 
address these  respects, the dynamic changes in the 
effect of HGF are noteworthy, especially if the fluctua-
tions in its effects might regulate pivotal genes involved 
in pathogenesis. By aligning the incremental range of the 
downstream gene regulation of HGF with elapsed time, 
longitudinal stratification of certain pathogenic events 
(e.g., intracranial inflammation) might help identify the 
subtle causality of schizophrenia-related gene regulation 
due to the absence of time-varying effects of HGF/MET 
signaling. Given that neuroinflammation and immune 

Fig. 3  Time-resolved stratification revealed timewise shifts in the HGF effect. A Venn diagrams of upregulated genes (left) and downregulated 
genes (right). B Venn diagrams of upregulated GO terms (left) and downregulated GO terms (right). C Venn diagrams of the top 30 upregulated 
GO terms (top) and downregulated GO terms (bottom). D–E Numbers of GOTRGs in each gene subset. The three GO terms at the intersection 
of Day 2, constant (denoted as Const.), and Day 7 in the Venn diagram of upregulated GO terms were selected for (D); likewise, the four GO terms 
from the Venn diagram for downregulated GO terms were selected for (E)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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dysregulation and their link to schizophrenia have long 
been discussed [25] and that there is some evidence that 
indicates that postnatal/childhood infections induce 
schizophrenia by interfering with CNS development [26–
28], there may be an overlap between temporal shifts in 
HGF-MET signaling effects on neurodevelopment and 
schizophrenia.

Furthermore, our findings would provide another hint 
for studies trying to reveal the roles of inflammatory 
cytokines in neurogenesis. The involvement of inflam-
mation to neurogenesis, especially adult neurogenesis, 
is widely discussed across different diseases [29] such 
as Alzheimer’s disease [30, 31], depression [32], epi-
lepsy [33], subarachnoid hemorrhage [34], and also SCI 
[7–9, 13], where neuroinflammation intervenes neuro-
genesis mediated by glial- or microglial-activities and 
those functions are closely related to either pathological 
mechanisms or therapeutical bottlenecks [29, 35]. There 
are various inflammatory cytokines reported to assist 
or antagonize neurogenesis [29], hence, roles of inflam-
matory response in neurogenesis might not be a black-
and-white situation. As our concept to introduce the 
time-series transition to cellular states and functionality 
of molecules are built with results from multi-dimen-
sional comparisons to decompose the effect of media-
tor molecules and time-series, it might provide more 
complicated perspectives of the immune systems and 
neurogenesis when our scheme is adopted to studies of 
single-cell-level resolution.

Finally, our methodology of longitudinal analyses of 
cross-sectional transcriptomic data can be applied to 
any research investigating the temporal effects of specific 
treatments. The duration of drug administration for SCI 
is usually determined by the assessment on phenotypes, 
although other factors, such as dose or route, might 
affect the outcome. Although we have conducted several 
studies applying HGF in SCI therapy, there is no evidence 
for the optimal duration of HGF administration, and the 
protocols have been empirically fine-tuned. In our lat-
est study in which we demonstrated the efficacy of HGF 
pretreatment prior to hiPSC-NS/PC transplantation, we 
determined the time points at which to sacrifice the rats 
according to previous reports. In the present study, we 
introduced an innovative approach comprising multidi-
rectional comparisons of gene regulation patterns and 
evaluation of their similarity through Venn diagrams. 
This methodology allowed us to present a brief proof 
of concept for secondary effects activated subsequent 
to the primary effect. Our findings enhance the cred-
ibility of the empirical HGF administration protocol by 
providing evidence that this delay contributes positively 
to therapeutic progress and suggesting that a seven-day 
administration period is more beneficial than a two-day 

period. It is worth mentioning that our study does not 
aim deterministic optimization of the protocol, therefore, 
the appropriate parameter search space is vaster than 
what we observed. While we used RNA-seq data from 
our previous study in which rats were sacrificed at two 
time points after a state-of-the-art HGF administration 
protocol, our investigation could not extend beyond Day 
7, when potential positive or negative nth-order effects 
on SCI might occur. Nevertheless, our study provides 
valuable contributions by proposing a solution for the 
complete black-box process of optimizing the duration of 
HGF administration.

Methods
Data preprocessing
We concatenated two separate raw data Excel files shared 
by Suematsu et  al. into a single file, replaced the not-a-
number (NaN) values with zeros, and performed a log-
arithmic transformation on the TPM values so that the 
output matrix consisted of only the log2(TPM + 1) val-
ues. We also generated a metadata table from the Excel 
sheets. As we intended to avoid managing the data files 
on GitHub, we also implemented a function to load the 
formatted data/metadata files. Hence, readers interested 
in reproducing our analyses are encouraged to refer to 
our repository.

PCA
PCA was conducted using scikit-learn [36]. The PCA 
components (i.e., the eigenvectors of each PC) were also 
calculated with the Scikit-learn implementation.

Selection of upregulated/downregulated genes
Cohen’s d value between sample populations X and Y  for 
a statistical variable can be defined as the equation below 
[22], in which the mean values for the populations are 
denoted as MX or MY  , the sample standard deviations 
are sX or sY  , and the sample sizes are nX or nY :

Setting the threshold to ± 0.8, upregulated genes and 
downregulated genes were identified. In detail, Day 7 was 
treated as population X and Day 2 as Y  in Fig.  1D, and 
HGF + was treated as X and the control as Y  in Fig. 1E. 
Therefore, genes that were more highly expressed in pop-
ulation X would have positive d values, while other genes 
that were expressed in population Y  would have nega-
tive d values. Genes with d values > 0.8 were classified 
as upregulated genes, and those with d values < 0.8 were 
classified as downregulated genes.

d :=
MX −MY

nXs
2
X
+nY s

2
Y

nX+nY
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Enrichment analysis and identification of GOTRGs
Enrichment analysis was conducted with gprofiler2 [37], 
and the results were visualized using Matplotlib [38] and 
Seaborn [39]. We used org.Rn.eg.db [40] to count genes 
that were tagged with specific GO terms and visualized 
the results with Matplotlib and Seaborn.
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