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Abstract

Background: The hair follicle (HF) is a unique miniorgan, which self-renews for a lifetime. Stem cell populations of
multiple lineages reside within human HF and enable its regeneration. In addition to resident HF stem/progenitor
cells (HFSPCs), the cells with similar biological properties can be induced from human-induced pluripotent stem
cells (hiPSCs). As approaches to regenerate HF by combining HF-derived cells have been established in rodents and
a huge demand exists to treat hair loss diseases, attempts have been made to bioengineer human HF using
HFSPCs or hiPSCs.

Main body of the abstract: The aim of this review is to comprehensively summarize the strategies to regenerate
human HF using HFSPCs or hiPSCs. HF morphogenesis and regeneration are enabled by well-orchestrated
epithelial-mesenchymal interactions (EMIs). In rodents, various combinations of keratinocytes with mesenchymal
(dermal) cells with trichogenic capacity, which were transplanted into in vivo environment, have successfully
generated HF structures. The regeneration efficiency was higher, when epithelial or dermal HFSPCs were adopted.
The success in HF formation most likely depended on high receptivity to trichogenic dermal signals and/or potent
hair inductive capacity of HFSPCs. In theory, the use of epithelial HFSPCs in the bulge area and dermal papilla cells,
their precursor cells in the dermal sheath, or trichogenic neonatal dermal cells should elicit intense EMI sufficient for
HF formation. However, technical hurdles, represented by the limitation in starting materials and the loss of intrinsic
properties during in vitro expansion, hamper the stable reconstitution of human HFs with this approach. Several
strategies, including the amelioration of culture condition or compartmentalization of cells to strengthen EMI, can
be conceived to overcome this obstacle. Obviously, use of hiPSCs can resolve the shortage of the materials once
reliable protocols to induce wanted HFSPC subsets have been developed, which is in progress. Taking advantage of
their pluripotency, hiPSCs may facilitate previously unthinkable approaches to regenerate human HFs, for instance,
via bioengineering of 3D integumentary organ system, which can also be applied for the treatment of other
diseases.

Short conclusion: Further development of methodologies to reproduce bona fide EMI in HF formation is
indispensable. However, human HFSPCs and hiPSCs hold promise as materials for human HF regeneration.
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Background

The hair follicle (HF) is a skin appendage that mainly
consists of cylindrical multiple layers of keratinocytes
surrounding the hair shaft with a specialized mesenchy-
mal cell aggregate of the dermal papilla (DP) at its prox-
imal end (Fig. la, b) [1]. In humans, HF not only
provides physical and immunological barrier for external
insults [1-3] but also impacts on one’s appearance.
Thus, a huge demand for the treatment of hair loss con-
ditions exists and numerous approaches with varying
levels of evidence have been developed. With recent ad-
vances in regenerative medicine, especially the emer-
gence of human induced pluripotent stem cells (hiPSCs),
the possibility of regenerating human HF has been glo-
bally discussed [4].

In fact, human HF regeneration for treating
non-autoimmune-mediated hair loss diseases, such as
androgenetic alopecia or female pattern hair loss, may
serve as an ideal model to probe the feasibility of regen-
erative medicine approaches for several reasons: (1) HF
is easily accessible and observable; (2) HF morphogen-
esis, biology, and physiology have been well understood;
(3) in vitro maintenance and cultivation of HF or
HF-derived cells have been established; (4) at least in ro-
dents, the methodologies to reconstitute HFs in vivo
have been established; and (5) autologous transplant-
ation of HFs in bald area has been widely conducted,
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etc. [3-6]. Of note, HF is a periodically self-renewing
miniorgan harboring multiple stem/progenitor cell pop-
ulations represented by epithelial HF stem cells (HFSCs)
at the bulge area (Fig. 1c) and DP or its precursors in
the dermal sheath (DS) (Fig. 1d), which serve as ideal
cell sources for HF regeneration and, potentially for
hiPSC generation [4—6]. Ultimately, HF-derived hiPSCs
can be converted into HFSCs and unlimitedly supply
materials for human HF regeneration [7].

HF morphogenesis and regeneration depends on in-
tensive and well-orchestrated interactions between re-
ceptive  epithelial and inductive = mesenchymal
components (Fig. 2) [3, 5, 8]. In the past attempts to bio-
engineer HF, variously prepared epithelial and mesen-
chymal components were combined and grafted into a
permissive in vivo environment to elicit intercompart-
mental interactions [5, 6]. Theoretically, less-committed
and highly proliferative HFSCs or progenitor cells could
efficiently yield HFs in those conventional assays. In line
with this hypothesis, HFSCs were shown to be favorable
materials for HF regeneration, at least, in rodents [9, 10].
However, the use of human HFSCs or progenitor cells
for such application was hampered by the limitation in
collectable cells and the loss of their intrinsic properties
during in vitro expansion [4]. Improvement of culture
condition to maintain/restore their intrinsic property is
pivotal.
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Fig. 1 Normal human scalp hair follicle structure. a A hair follicle microdissected from human scalp (an anagen hair follicle is presented). b

Corresponding histopathology image. The bulge area harbors stem cells. Hair matrix cell proliferation in the bulb results in hair shaft elongation. ¢
Hair follicle epithelial stem cells locate in the outermost layer of the outer root sheath. d The dermal papilla (DP) and the dermal sheath (DS) are
mesenchymal components demonstrate trichogenic activity
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Fig. 2 Hair follicle morphogenesis and hair cycle Hair follicle morphogenesis and hair cycle are enabled by well-orchestrated epithelial-
mesenchymal interactions. In morphogenesis, crosstalk between the placode and the dermal condensate (the precursor of the dermal papilla)
initiates epithelial invagination to form the lanugo. In hair cycle, communication between bulge stem cells and the dermal papilla is thought to
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Recent studies support the usefulness of hiPSCs to ex-
perimentally regenerate human HF [11-14]. The cell
populations biologically resembling epithelial HFSCs or
DP cells can be induced from hiPSCs [12, 14, 15].
Co-grafting with either component respectively with der-
mal or epithelial cells into in vivo environment resulted
in HF-like structure formation. Furthermore, hiPSCs
may enable previously unthinkable approaches to bio-
engineer HFs. For instance, taking advantage of their
pluripotency, 3D integumentary organ system can be
directly generated from hiPSCs [13].

The aim of this review is to summarize the strategies
for using human HFSCs and progenitor cells or hiPSCs
for HF regeneration with a particular emphasis on the
enhancement of epithelial-mesenchymal interactions
(EMIs).

Experimental techniques to elicit folliculogenic
EMI

Various approaches have been attempted to elicit EMIs
sufficient for HF regeneration [4]. However, all assays
are based on the same principle; combining responder
epithelial cells with inducer mesenchymal cells that are
placed into a neutral permissive environment [5]. A
two-step approach consisting of in vitro experimenta-
tions to establish a condition to maximize EMIs and in
vivo HF reconstitution assays adopting materials

prepared in the condition optimized in vitro study would
be beneficial [4, 5].

In vitro approaches

Organ culture of microdissected human HFs could be
one of best approaches to monitor in vivo EMIs [16].
However, HF isolation from the scalp sample can be la-
borious and the specimen is not readily available for all
institutions.

More simply, HF keratinocytes (HFKCs) and DP, DS,
or other trichogenic dermal cells (e.g., murine neonatal
fibroblasts) can be co-cultured using cell inserts (Fig. 3a)
[4, 5]. Epithelial and mesenchymal components crosstalk
via shared culture medium with resultant HFKC prolif-
eration, HFKC-related gene (e.g., KRT15, CD200, DIO2,
GATA3, TRPS1, KRT75, MSX2) upregulation, or DP bio-
marker (e.g., ALPL, VCAN, LEF1, WNT5, NOG, SPRY4)
expression within a couple of days [11, 17, 18]. Major
drawback of this approach is the absence of direct inter-
compartmental crosstalk enabled by cell-cell contact.

To overcome this drawback, KCs and DP or equivalent
cells can be mixed to form cell aggregates and main-
tained in 3D culture condition (Fig. 3b) [19-21]. Magni-
tude of EMIs can be measured by the expression levels
of HFKC or and DP marker expression [19-21]. EMI
can further be enhanced by cell compartmentalization
methods, in which HF epithelial and mesenchymal cells
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Fig. 3 In vitro approaches to elicit folliculogenic EMI. a Co-culture of hair follicle epithelial and mesenchymal components using cell inserts. b
Formation of spheres in which keratinocytes (KCs) are covering a dermal papilla (DP) cell aggregate. € Compartmentalization of KCs and DP cells
in a collagen gel droplet. d Reproduction of hair follicle-like structures made of human KCs and DP cells in Matrigel. e Regenerated HF-like
structure in Matrigel. The data shown in (d, e) are obtained in a preliminary experiment supported by JSPS KAKENHI (Grant Number JP 16H05370

were placed at high-density in acid-soluble collagen
allowing the cells to elicit sufficient EMIs (Fig. 3c) [22].
Taking advantage of this idea, cylindrically assembled
human KCs can be placed onto human DP cell aggre-
gates embedded within collagen gel, allowing formation
of a structure partially reproducing HF microanatomy in
vitro in pilot studies (Fig. 3d, e).

In hair morphogenesis, focal thickening of the em-
bryonic epidermis, i.e., hair placode, and DP precur-
sors in the dermis communicate to initiate HF
formation (Fig. 2). To mimic this situation in vitro,
we are currently attempting to establish an assay in
which trichogenic dermal cell or tested cell aggre-
gates are embedded into the epidermal-dermal inter-
face of three-dimensional human skin culture. A
preliminary data suggests that the detection of some

HF morphogenesis-related genes is possible under
this experimental condition.

In vivo approaches

Considering that HF regeneration efficiency should cor-
relate well with the intensity of EMI, in vivo HF recon-
stitution assays adopting cell transplantation into
immunodeficient mice would be the most optimal way
to trigger EMI (Fig. 4) [5]. In the chamber assay, mixture
of KCs and trichogenic dermal cells (mostly DP, DS, or
neonatal dermal fibroblasts) were transplanted into a sil-
icon chamber grafted on to the dorsal fascial surface
(Fig. 4). The chamber keeps the humidity and space en-
abling HF reconstitution. Newly generated HFs can be
visible from the outside of the body. However, larger
number of the cells and longer period is necessary for
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Fig. 4 Approaches for HF regeneration in vivo. In the chamber assay, mixture of keratinocytes and trichogenic dermal cells are transplanted into
a silicone chamber on the back of immunodeficient mice. In the patch assay, cell mixture is directly injected into the hypodermis of

immunodeficient mice
A\

this assay, when compared to the path assay, in which and the morphology of regenerated structures were
epithelial and dermal cell mixture is directly injected greatly influenced by the type of epithelial cell compo-
into the hypodermis of mice (Fig. 4). The former re- nents under the condition that the identical trichogenic
quires 10 million or more cells and around 35 days to  dermal cells were used as hair induction drivers [10, 23—
see HFs, while the latter requires around 1 million cells  25]. Past studies demonstrated that multiple epithelial
and around 10 days (summarized in [5]). In addition, a  cell subsets with high proliferative capacity and multipo-
large regenerated HF-bearing area can be observed in  tency to regenerate multiple lineage of the pilosebaceous
the chamber assay, but several patches can be generated unit exist within HF [9, 10, 26-30]. Keratin 15
in a single mouse in the patch assay (Fig. 4). Because of  high-expressing slow-cycling HF epithelial stem cells
the limitation in human samples usable for experimenta-  residing in the bulge area of the outer root sheath, an in-
tions and the technical simplicity, the patch technique sertion point of the arrector pili muscle, is the most
may be favorable for attempts to regenerate HF using established “HFSC” subset, which potentially provide op-
human-derived cells [11]. The sandwich assay is also  timal materials for HF regeneration (Fig. 5a, b) [31-33].
used to evaluate hair inductive capacity of dermal cells In line with this, isolated keratin 15 and CD34-positive
[5, 18]. In this assay, tested dermal cell aggregates were  murine bulge cells more efficiently reconstituted
implanted between the epidermis and dermis of globular  complete HF structures than non-bulge HFKCs, when
skin piece, which is subsequently grafted in the subcuta-  co-grafted with identical dermal cells into in vivo envir-
neous space. When HF or similar structure is formed, onment [9, 10]. This finding supported the hypothesis
the transplanted dermal cells can be considered to pos-  that epithelial HFSCs are more receptive for dermal tri-
sess trichogenic activity [5, 18]. In addition to those as-  chogenic signal and represent better material for HF bio-
says, some derivatives with minor modifications have engineering [4].
been reported with varying levels of success (summa- Whether or not this observation is applicable for hu-
rized in [5]). man subjects has not been fully addressed. Although
CD200 was identified as a cell surface marker, which en-
Use of epithelial stem/progenitor cells to increase  ables the isolation of highly proliferative human bulge
HF formation efficiency cells [33], the bulge cells obtainable from clinical sam-
Previous studies adopting in vivo assays as described ples are usually limited and insufficient to conduct even
above indicated that the efficiency of HF regeneration the patch assay. In addition, human epithelial HFSCs
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Bulge cell-enriched KCs
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Fig. 5 Use of epithelial stem/progenitor cells to increase HF formation efficiency. a Isolated human HF bulge cell-enriched keratinocytes (KCs) are
highly proliferative when compared to non-bulge HFKCs. b The comparison of hair forming capacity between bulge stem cells (SCs) and non-
bulge HFKCs. The same number of bulge SCs and non-bulge HFKCs were isolated form HFs and co-transplanted with the same amount of
trichogenic dermal cells (usually mouse neonatal dermal fibroblasts) into immunodeficient mice to assess HF forming efficiency
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seemed to lose their intrinsic properties when they were
cultured as demonstrated by the downregulation of sig-
nature genes, including keratin 15 [32], CD200 [33],
Lhx2 [34], and Sox9 [35]. How this affects their ability to
communicate with mesenchymal cells needs to be ap-
propriately investigated. However, unlike murine epithe-
lial HFSCs, use of human counterpart to regenerate HFs
is still technically challenging.

A possible approach to overcome this issue would be
to increase the receptivity of KCs to trichogenic dermal
signals by predisposing them to follicular fate. Activation
of Wnt/B-catenin pathway may be a promising approach
[36-38] as forced expression of B-catenin in the epider-
mis resulted in ectopic expression of hair keratins or de
novo hair follicle formation in mice [39, 40]. Modulation
of p63 expression in KCs may also enhance the response
to trichogenic dermal message to the level analogous to
that in HFSCs [41]. Yet, an extreme caution needs to be
paid for adopting these strategies for human HF regener-
ation, as aberrant expression of such genes may result in
tumor formation. For instance, overactivation of
[-catenin could give rise to pilomatricoma [42].

Amelioration of culture condition to maintain HFSC
properties would be useful to prepare large number of
HFSCs for HF bioengineering. A recent study demon-
strated that murine HFSCs could be expanded maintain-
ing their biological characteristics including high HF

forming  capacity when they were cultured
three-dimensionally in Matrigel containing ROCK in-
hibitor (Y27632), FGF-2, and VEGF-A [43]. How this
methodology sustains human HFSC properties in vitro is
still unclear and needs to be investigated in future
studies.

An alternative approach to enhance KC receptivity to
dermal signal is to use neonatal or embryonic KCs. Past
in vivo grafting studies demonstrated that neonatal or
fetal KCs were able to regenerate HF or HF-like struc-
tures [24, 44, 45]. Some HF-forming capacity could still
be observed after cultivation of fetal cells. Apparently,
this strategy cannot be directory adopted for clinical ap-
plications; however, these observations can drop a hint
for enhancing EMIs for HF regeneration. Human adult
KCs can reacquire some juvenile properties by basic
fibroblast growth factors treatment [46]. Likewise, ex-
posure of KC to major factors playing key roles in the
early phase of HF morphogenesis may allow KCs to ex-
hibit HF forming cell (e.g., hair placode cell) phenotype.
WNT, Ectodysplasin-A (EDA), BMP, and sonic hedgehog
(SHH) signaling pathways are involved in HF placode
formation [3, 8]. Either activation or suppression of
these pathways in cultured KCs by supplementation of
ligands could endow the cells with some HESC proper-
ties. Feasibility of this approach is under investigation
using human 3D skin equivalents and preliminary data
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suggested upregulation of several hair placode signature
genes could be achieved.

Preparation of trichogenic dermal cells for
successful HF induction

In HE, DP cells or DS cells locating closely to DP in the
cup-shaped HF end are shown to possess hair inductive
capacity (Fig. 6a, b) [5]. In pioneering studies, surgical
removal of DPs from vibrissa HFs resulted in the arrest
of hair shaft elongation [47], while transplantation of mi-
crodissected DPs or DS cells into recipient skin success-
fully induced HFs [48], clearly indicating the
indispensable role of those cells in HF morphogenesis
and regeneration. Therefore, preparation of sufficient
amount of DP, DS, or dermal cells with equivalent hair
inductive capacity is essential to achieve successful HF
bioengineering.

Strategies to prepare DP cells while enhancing hair
inductive capacity

DP cells are the most representative trichogenic dermal
cells [5]. Murine DP cells which can be efficiently iso-
lated by cell sorter using genetically introduced fluores-
cent protein or CD133 as the cell surface marker [49—
51], while human DP cells are usually manually
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microdissected from scalp samples (Fig. 6b) and ex-
panded in vitro (Fig. 6¢) before further experimentation
as a specific surface marker is not readily available [5].
The major problem of DP cell culture is, similar to that
of KC culture, the loss of intrinsic properties during in
vitro expansion [18, 52, 53] and various approaches have
been attempted to overcome this hurdle.

In the bulb portion of HE, DP cells are maintained in a
milieu of secreted ligands, growth factors, hormones,
and extracellular matrices, which enables DP cells to
crosstalk with HF matrix KCs and other cell subsets to
sustain their properties [5]. Significance of this EMI has
been supported by the observation that the exposure to
KC-conditioned medium facilitates DP cells to sustain
their intrinsic properties, such as signature gene expres-
sion and, more importantly, hair inductive capacity [54,
55]. Thus, supplementation of DP cell activating factors
missing in conventional culture medium could sustain/
restore DP properties in vitro. In line with this specula-
tion, agonist-driven activation of key signaling pathways,
which were downregulated in DP cells during in vitro
expansion, such as WNT, BMP, TGF-$2, and FGF signal-
ing pathways, resulted in amelioration of murine and
human DP properties [18, 53, 56—58]. The effect can be
synergistically enhanced by combination of individual

-
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Fig. 6 Preparation of trichogenic dermal cells for successful HF induction. a Microdissected lower portion of human HFs. The dermal papilla (DP)
and the dermal sheath (DS) are respectively indicated. b High magnification image of DP and the “flipped” cup shape portion of DS. Note that
two components are continuous. € In vitro expansion of human DP. d Restoration of DP properties in DP activation culture condition (DPAC).
Note that DP cell morphology is distinct from that shown in (c).
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factors. For instance, dermal papilla activation culture
condition (DPAC) containing WNT, BMP, and FGF ago-
nists has been established to sustain or elicit human DP
cell properties in culture (Fig. 6d). Transplantation of
DPAC-treated human DP cells and human KCs into
nude mice resulted in incomplete but distinguishable
HF-like structure formation [18].

Aggregative behavior represents a major biological fea-
ture of DP cells [18, 59-62] (Fig. 4c). Most likely because
cell aggregation restores cell-cell contact enabling better
crosstalk between cells, three-dimensional culture can
“reprograms” microenvironment of DP cells and ameli-
orate biological characteristics of cultured DP cells [18,
63]. Indeed, DP cell aggregates expressed higher levels of
DP biomarkers and exhibit greater in vivo hair inductive
capacity than non-aggregated cells [18, 59—61]. Several
methodologies, such as hanging drop culture [61], forced
cell aggregation by centrifuging in a low-cell binding
plate [18, 59], and self-assembly on poly (ethylene-co-v-
inyl alcohol) (EVAL) membranes [60] have been re-
ported to be effective in generating DP spheres with
respective biological effects.

The observations described above suggested the possi-
bility of overcoming technical obstacles which hamper
the preparation of sufficient trichogenic human DP cells
to trigger intense EMI by modulating culture condition
[4]. At the same time, currently available approaches
would not allow preparation of fully competent human
DP cells in vitro [18]. Further improvements, including
activation of SHH signaling pathway [64] or addition of
DP-associated extracellular matrices (e.g., laminin, type
IV collagen, fibronectin, olfactomedin, versican [5]), may
be beneficial to achieve full reactivation of cultured hu-
man DP cells for HF bioengineering. Overexpression of
transcription factors associated with HF neogenesis in-
cluding Sox2 or Tbx18 [65, 66] in functionally impaired
DP cells may provide strategy to restore mouse DP cells;
however, such approach would not be suitable for clin-
ical appreciations because of potential risk of
tumorigenesis.

Preparation of DS cells as potential substitute for DP cells
Hair inductive capacity of DS cells, especially those in
the proximal end of HF, has been demonstrated by vari-
ous studies (summarized in [5]). DS tissue transplant-
ation to amputated vibirissa HF restarted hair shaft
production and implantation of human DS cells into the
forearm skin of human recipient resulted in HF neogen-
esis [48, 67]. The classic observation that regeneration of
DP in dissected upper two-third of vibrissa HFs [68]
suggested that DS might contain DP stem cells or pre-
cursors, which was experimentally shown by in vivo fate
mapping of DS cells [69]. Thus, DS represents an alter-
native candidate to elicit EMI for HF regeneration. In
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fact, currently ongoing clinical study adopts DS “cup”
cells adjacent to DP obtained from microdissected hu-
man HF for the treatment of androgenetic alopecia
(https://replicel.com/patients/hair-study).

Elicitation of trichogenic activity in other mesenchymal
cells

Neonatal mouse dermal fibroblasts have been rou-
tinely used in vivo HF reconstitution assay and are
widely used for hair reconstitution assays [52, 70], im-
plying that trichogenic capacity may be induced in
mesenchymal cells other than DP or DS cells.
Skin-derived precursor cells (SKPs) isolated from the
dermis express Sox2 and nestin and shown to be tri-
chogenic in mouse [71]; however, partly because isola-
tion would be laborious, to what extent SKPs
contribute to treatment of hair loss by HF regener-
ation is unclear. Adipose-derived stem cells (ASCs)
could provide favorable cell source for various clinical
applications. Rat ASCs can be combined with DP
cells to form DP-like spheres, which exhibited super-
ior DP characteristics than DP cell spheres [72].
Introduction of platelet-derived growth factor-A,
SOX2, and beta-catenin genes can endow ASCs hair
inductive capacity [73]. Instead of such genetic modi-
fications, treatment of ASCs with a cocktail of
apolipoprotein-A1l, galectin-1, and lumican, the extra-
cellular proteins overrepresented in embryonic perifol-
liculogenetic dermis [74], may enhance DP cell
properties in ASCs.

Approaches for HF regeneration using of human-
induced pluripotent stem cells

Human-induced pluripotent stem cells (hiPSCs) hold
great promise as material for regenerative medicine [7].
Intriguingly, cellular components of HE, such as HFKCs,
melanocytes, and DP cells, can be reprogrammed into
hiPSCs (summarized in [7]). HFKCs efficiently give rise
to hiPSCs, which can be further differentiated into other
cell types to form functional structures, for instance,
neural progenitors and neurons [75]. DP cells and mela-
nocytes express high levels of SOX2 [76, 77]. Murine DP
cells also upregulate KIf4 and, taking advantage of intrin-
sic high expression of tow Yamanaka factors, can be dif-
ferentiated into iPSCs with Oct4 alone [77]. With
current technology, four Yamanaka factors were indis-
pensable to reprogram human DP cells into hiPSCs [63];
however, these findings support the idea of bioengineer-
ing large number of human HFs from a couple of HFs
plucked from the scalp via generating hiPSCs and pro-
gram those cells into HFKCs and DP cells. To date, sev-
eral studies have reported the use of hiPSCs for the
attempts to regenerate HF structures [11, 12, 14, 15].
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Generation of HF epithelial cells from hiPSCs

Human embryonic stem cells were differentiated into
keratinocytes with retinoic acid (RA) and BMP4 [78, 79]
(Fig. 7). Adopting these reagents, fully differentiated KCs
were induced from hiPSCs, indicating that KC precur-
sors with fetal KC properties or HFKCs, which are
equipped with high receptivity to dermal signals could
be generated using hiPSCs [4, 11].

Based on this hypothesis, we induced ectodermal pre-
cursor cells (EPCs) which were committed into KC
lineage but not terminally differentiated and assessed if
they were capable of communicating with DP cells and
eventually contribute to HF formation in vivo [11]. In
our study, EPCs derived from hiPSCs generated with 4
or 3 Yamanaka factors (POUSFI1, SOX2, KLF4 +/- MYC)
expressing keratin 14 and 18 were successfully obtained
by the use of RA and BMP4 and KC culture medium.
One out of three hiPSC-EPC lines more strongly upreg-
ulated HFKC markers than normal human adult KCs
(NHKCs), when co-cultured with human DP cells. At
the same time, DP cells increased some DP biomarker
expression in response to coexisting EPCs. These find-
ings supported that hiPSCs-derived EPCs were capable
of eliciting intense EMIs with DP cells. When mixed
with trichogenic mice dermal cells and transplanted into
nude mice, hiPSC-EPCs, but not NHKCs, partially

Page 9 of 13

contributed to regenerated HF structures in the patch
assay experiments [11].

Human epithelial HFSCs highly express cell surface
markers, such as CD200 and ITGAG6 [12, 33]. With some
modification to the KC induction protocol followed by
selective cell sorting of CD200(+)ITGA6(+) subset, Yang
et al. successfully generated epithelial HFSCs [12]. When
co-grated with mouse neonatal dermal cells in the
chamber assay, generated cells were capable of regener-
ating HF structures and repopulating into all HF line-
ages. Moreover, hiPSC-derived HFKCs were shown to
differentiate into sebocytes in vitro and reconstituted
interfollicur epidermis, indicating their multipotency
[12]. These observations indicate that hiPSCs provide
materials for the generation of HFSCs with high recep-
tivity to trichogenic dermal signals, which facilitate in-
tense EMIs sufficient for HF bioengineering.

Generation of DP cells or equivalents from hiPSCs

DP is the vital mesenchymal component for HF mor-
phogenesis and regeneration. However, as mentioned
above, currently available approach would not allow
preparation of fully functional DP cells for human HF
bioengineering urging us to develop a protocol for
generating DP or equivalent cells with trichogenicity
in vivo [14].
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Fig. 7 Approaches for HF regeneration using of human induced pluripotent stem cells (hiPSCs). Currently, two respective approaches exist. In the
“classic” approach, epithelial and mesenchymal components optimized for trichogenic EMIs are prepared and combined in vivo to form HF
structures. Another approach takes advantage of pluripotency of hiPSCs, 3D integumentary organ systems with HFs are microdissected from
cystic structures generated by grafting hiPSCs in vivo. HFs can be dissected from 3D integumentary organ systems for downstream applications
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Generation of mesenchymal cells (MCs) with some
plasticity from iPSCs has been reported [80, 81]. Thus,
we first attempted to establish a methodology to induce
MCs with SC properties [14] (Fig. 7). Use of mesenchy-
mal stem cell medium containing PDGF, TGF-f3, and
FGF enabled the induction of hiPSCs into MCs.
LNGFR(+)THY-1(+) subset were subsequently isolated
form the induced cell population, which were shown to
be highly proliferative and with the capacity to differen-
tiate into osteoblast, adipocyte, and chondrocyte, sup-
porting their mesenchymal SC-like properties [82].
When exposed to RA followed by DPAC in vitro,
LNGFR(+)THY-1(+) MCs upregulated some DP bio-
markers such as ALPL, WIFI, HEYI, WNT5A,
GUCYIA3, and LRP4 and were able to bidirectionally
communicate with human KCs in co-culture to increase
DP and HFKC markers in themselves and KCs respect-
ively (Fig. 7). Importantly, when co-transplanted with
human KCs, RA-DPAC-treated LNGFR(+)THY-1(+)
MCs gave rise to HF-like structures [14]. Regenerated
HF-like structures recapitulated some HF characteristics,
including HF-specific marker expression, but were mor-
phologically incomplete and infrequently regenerated.
These findings clearly demonstrated that further investi-
gation is necessary to fully establish the methodology to
generate DP cells from hiPSCs.

Possible strategies to accomplish this goal include the
modification in differentiation protocol including further
amelioration of DPAC. Considering that DP cells in the
craniofacial area originate from the neural crest [83, 84],
induction of DP cells via neural crest cell lineage would
be an alternative approach [15]. Taking advantage of this
approach, successful HF regeneration using iPS
cell-derived epithelial and mesenchymal component has
been presented (by Prof. OhSang Kwon, Department of
Dermatology, Seoul National University at the World
Congress of Hair Research 2017, Kyoto, Japan). The
work should move the field forward, when the detailed
information is officially published.

Regeneration of HFs via bioengineered 3D integumentary
organ

A unique approach taking full advantage of hiPSCs was
recently reported (Fig. 7) [13]. In the study by Takagi
and colleagues, 3D integumentary organ system (IOS)
was efficiently generated from murine gingiva-derived
iPSCs by a transplantation method in which more than
30 embryoid bodies (EBs) were embedded in collagen
gel and transplanted into subrenal capsule of severe
combined immunodeficient mice [13]. This method
allowed formation of cystic areas in transplants at higher
ratio than those generated from single iPSC or EB trans-
plants. Intriguingly, 3D IOS, including the skin, HFs,
dermis, sebaceous glands, and subcutaneous tissue, were
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formed at high frequency in explants by CDB transplant-
ation method. In addition, Wnt10b-treatment increased
the efficiency of mature HF formation in explants. 3D
IOS can be transplanted onto the back of nude mice and
regenerated full skin structures containing HFs with nor-
mal hair subtype ratio, spacing, and hair cycles. To what
extent this new technology is applicable to human iPSCs
needs to be further examined. However, this novel ap-
proach may enhance opportunity for successful recon-
struction of complicated structures from hiPSCs,
represented by HFs.

Future direction of HF bioengineering from hiPSCs

All currently available approaches using iPSCs men-
tioned above requires in vivo environment to form HF
structures [11-15]. Even if HFs of acceptable morph-
ology were successfully made, direct transplantation of
regenerated structures into hair loss area of patients is
still technically challenging. Reproduction of complete
HF structures seems to be straightforward to treat hair
loss; however, HF structures are damaged/miniaturized
but not lost in the majority of hair loss disorders [85].
Thus, preparation of cell population which supports HF
enlargement via cell autonomous or non-autonomous
mechanisms, e.g., incorporation into DP or secreting
growth factors or activating ligands for signaling path-
ways crucial for HF neogenesis, could be more practical
and cost-friendly approaches which are achievable with-
out in vivo environment [4]. As the width of the hair
shafts correlates with the size of DP [86], induction of
DS cells with DP precursor cell capacity to repopulate to
DP or the cells that constitutively secrete hair
growth-promoting factors induced from hiPSCs may
represent promising future strategy for the treatment of
hair loss diseases. Recent observations, such as restor-
ation of damaged HF in a mouse model with humanized
scalp by human DP and DS cells, initiation of new ana-
gen by extracellular vesicles derived from mesenchymal
SCs activated DP cells in mice, and promotion of human
HF growth by ASCs and their secretary factors [87—89]
suggested the possibility of similar approaches using
hiPSCs.

It should be noted that the need for regeneration of
complete human HF structure is still present. For some
types of non-autoimmune-mediated permanent hair loss,
represented by scaring alopecia secondary to trauma,
burn, or irradiation, and extensive male or female pat-
tern hair loss, transplantation of regenerated HFs would
be the only treatment option. For clinical application, in
vivo HF reconstitution using immunodeficient mice
wound not be preferable mainly because of biosafety. Es-
tablishment of in vitro construction of functional HF
structures by means of 3D molding (Fig. 3d, e) or IOS
(Fig. 7) using hiPSCs-derived HF cells (and possibly
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HEFSPCs as well) is required. The size of bioengineered
HFs may be enlarged by the cell-based supplementation
strategies as described above.

Possible application of HFSPCs or hiPSCs-derived HF cells
in regenerative medicine

The techniques to better prepare or maintain fully func-
tional HFSPCs or hiPSCs-derived HF cells could also be
applied to regenerative medicine for other diseases. In
addition to multipotent bulge epithelial HFSPCs capable
of repopulating HFs, the epidermis, and sebaceous
glands [9] [10], DS cells can be more preferential cell
source than dermal fibroblast in the preparation of 3D
skin  equivalent [90]. Therefore, HFSPCs or
hiPSCs-derived HF cells may provide better materials for
whole skin regeneration. DP and DS cells were shown to
differentiate into hematopoietic, adipogenic, and osteo-
genic lineages [91, 92]. DP and DS cells supported em-
bryonic stem cells and iPSC maintenance and
hematopoiesis in vitro [93]. Furthermore, DS cells exhib-
ited immunosuppressive role to improve islet allograft
survival in the mouse model of type I diabetes [94].
These observations suggest that HFSPCs or
hiPSCs-derived HF cells may provide favorable materials
in regenerative medicine not limited to HF
bioengineering.

Conclusion

The advances have been made in the identification of
stem/progenitor cell subsets within HFs. Various tech-
niques to enhance EMI and regenerate HFs adopting
these subsets have been developed. However, most in-
vestigations were conducted in mice. We are aware that
mice and human HF cells share fundamental biological
properties but they are distinct [95]. Major morpho-
logical and physiological characteristics, such as size and
hair cycle, are also different between mouse and human
HFs [4, 14]. Seemingly, theoretical basis for human HF
regeneration have already been developed, yet a pile of
problems still remain unsolved before human HF bio-
engineering becomes truly possible. The wise use of
hiPSCs may enhance opportunity to overcome major
technical hurdles and enable better understanding of HF
biology, drug discovery, and, ultimately, replacement
therapy for intractable hair disorders, which can further
be applied to treat other tackling diseases.
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