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Abstract

Recent innovation in high-throughput sequencing technologies has drastically empowered the scientific research.
Consequently, now, it is possible to capture comprehensive profiles of samples at multiple levels including genome,
epigenome, and transcriptome at a time. Applying these kinds of rich information to clinical settings is of great
social significance. For some traits such as cardiovascular diseases, attempts to apply omics datasets in clinical
practice for the prediction of the disease risk have already shown promising results, although still under way for
immune-mediated diseases. Multiple studies have tried to predict treatment response in immune-mediated
diseases using genomic, transcriptomic, or clinical information, showing various possible indicators. For better
prediction of treatment response or disease outcome in immune-mediated diseases, combining multi-layer
information together may increase the power. In addition, in order to efficiently pick up meaningful information
from the massive data, high-quality annotation of genomic functions is also crucial. In this review, we discuss the
achievement so far and the future direction of multi-omics approach to immune-mediated diseases.
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Background
Immune-mediated diseases (IMDs) consist of a wide
range of etiologies from autoimmune to autoinflamma-
tory conditions [1]. Although a variety of therapeutic
agents and regimens have been developed for each IMD,
the treatment response varies from patient to patient.
The heterogeneous pathogeneses of an IMD may be as-
sociated with different outcomes [2].
Recent advances in high-throughput sequencing tech-

nologies have enabled capturing comprehensive profiles
of samples at multiple levels, referred to as omics ana-
lysis, for example, genomic, epigenomic, transcriptomic,
and proteomic analyses. Multi-omics analysis refers to
the collective analysis of omics data at multiple levels [3]
and enables deep phenotyping of patients.

Personalized medicine, more recently referred to as
precision medicine, aims to develop drugs and to
optimize prescription of the appropriate drugs at the op-
timal dose and time [4, 5]. To achieve this aim, a deep
understanding of the disease etiology, accurate and early
diagnosis, appropriate stratification of patients based on
disease phenotype, and prediction of the treatment re-
sponse are required.
Applying multi-omics information to precision medi-

cine is a clinically attractive challenge. Although still in
its infancy, there have been numerous efforts to apply
omics data in clinical practice using various ap-
proaches (Fig. 1). Here, we review some of these ap-
proaches and discuss their potential future directions.

Prediction of treatment response in rheumatoid arthritis
A growing number of drugs, from small molecule com-
pounds to biologics, have been approved for IMDs so far
[6]. In particular, many biological and non-biological
disease-modifying anti-rheumatic drugs are widely used
to treat rheumatoid arthritis (RA) [7, 8]; however, the
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treatment response varies from patient to patient, with
only 30–40% of patients showing an adequate response
to first-line biological disease-modifying anti-rheumatic
drugs [9, 10]. Clinically, prediction of the treatment re-
sponse before administering therapy to reduce the risk
of side effects and the economic burden has gained great
interest [10].
For this purpose, many studies have been conducted

over the last 10 years (reviewed in detail elsewhere [11]).
Briefly, patients serologically positive for rheumatoid fac-
tor or anti-citrullinated protein antibodies seem to show
good responses to rituximab (RTX), an anti-CD20
monoclonal antibody [12, 13], to abatacept (CTLA4-Ig
fusion protein) [14] and to tocilizumab (TCZ) [15], al-
though serological positivity did not seem to be predict-
ive of the response to TNF inhibitors [16]. In addition, a
strong interferon (IFN) signature in serum was reported
to predict a good response to TCZ [17] but a poor re-
sponse to RTX [18].
Based on these findings, more specific and accurate

markers for predicting treatment response have been in-
vestigated using omics data. Potential genetic variants
associated with treatment response based on genomic
data have been reported. For example, variants in the
PDE3A–SLCO1C1 [19], CD84 [20], and PTPRC [21] loci
and variants affecting the expression of CD40 and CD39
[22] were found to be associated with the response to
TNF inhibitors; however, a limited number of those
findings could be reproduced by a subsequent study
[23], and thus further validation is required.
For fair evaluation of the usefulness of genomic data,

one community-based assessment aimed to develop

models predicting the response to TNF inhibitors in RA
patients in 2016 [24]. In this open challenge, genomic
data and clinical information from over 2000 patients
were provided to 73 research groups to generate a pre-
diction model using various approaches, including ma-
chine learning methods. Contrary to expectations, all of
the groups failed to show a significant contribution of
genetics to prediction accuracy. The highest performing
model in this challenge greatly relied on clinical parame-
ters, especially the 28-joint disease activity score at base-
line [25]. Although this study reinforced the importance
of clinical parameters for predicting treatment responses,
clinical application of genetic data may still have a role
in the prediction of drug responses, especially in larger
sample sizes [26], and in combination with other omics
levels such as transcriptomic data.
In contrast to genomic data, transcriptomic data re-

flect the variance acquired from environmental factors
as well as from genetics. For instance, exposure to in-
flammation, cellular activation, or cellular composition
can be reflected in transcriptomic data [27]. In some re-
ports, transcriptomic data proved useful for patient
stratification. In RA, synovial fibroblasts (SFs) play im-
portant roles in joint inflammation [28] and show a dy-
namic response to inflammation at the epigenomic and
transcriptomic levels [29]. Lewis et al. classified RA pa-
tients into three distinct pathotypes (fibroblastic pauci-
immune, macrophage-rich diffuse-myeloid, and lympho-
myeloid pathotypes) based on gene expression in the
synovium and assessed the treatment response associ-
ated with each pathotype using transcriptomic data [30].
They found that the pauci-immune pathotype was

Fig. 1 Present strategies for stratification of disease-affected and unaffected cases. How clinical information, transcriptome, and genome data can
be used for predicting clinical outcomes or disease susceptibility.
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predictive of an inadequate response to TNF inhibitors
[31]. In addition, Humby et al. recently conducted a
biopsy-driven randomized controlled study (RTX vs.
TCZ) and reported that “B-cell poor” patients (defined
by RNA sequencing of SFs) showed a better response to
TCZ than to RTX [32]. Although further validation is
warranted, the transcriptomic data from diseased tissue
might enable better stratification of IMD patients. Taken
together, combining multi-level information, such as
clinical information, serological information, and gen-
omic/transcriptomic data, will improve the prediction of
treatment responses in RA patients.

Prediction of disease susceptibility using genomic
data
Application of genomic data for precision medicine, es-
pecially for disease prevention, has gained wide interest
in this era [33]. In particular, the polygenic risk score
(PRS) has been applied to a variety of diseases, and some
of the results have been promising. PRS is calculated by
summing the effects of all common variants on disease
onset to estimate the overall risk of developing a particu-
lar disease. It is especially useful for polygenic traits, in
which small effects of numerous common variants con-
tribute to disease onset. For instance, coronary artery
disease (CAD) is a prevalent polygenic trait. In one
study, individuals with a high PRS (8% of the population)
had at least a threefold increased risk of developing
CAD [34]. A clinical trial using the PRS for treatment
intervention in CAD patients also had a promising out-
come [35]. These results highlight the possibility of
using genetic information to stratify high-risk patients,
although predicting the risk of disease onset using only
genomic data is still a challenge.
Generally, a larger sample size in genome-wide associ-

ation studies (GWAS) is necessary for better prediction
of the PRS, although the explained genetic variance of
each trait also has an influence [36]. Among IMDs, rela-
tively large-scaled GWAS for inflammatory bowel dis-
ease (IBD) have been performed [37, 38], and those
datasets enabled promising disease risk prediction in the
subsequent studies [34, 39]. In one of those studies, sub-
jects with a PRS in the top 10% of distribution had a
2.43-fold increased disease susceptibility compared to
the remaining 90% [34]. Although pre-disease interven-
tions in IBD have not been established, some dietary
habits have been associated with IBD onset [40, 41].
Thus, dietary intervention in high-risk cases could re-
duce the risk of disease onset.
In clinical practice in IMDs, correct diagnosis at the

first outpatient visit is important. One interesting study
evaluated the value of genetic data combined with clin-
ical examination for accurate diagnosis of inflammatory
arthritis [42]. In that study, based on retrospective data,

the authors indicated that calculating disease risk using
genetic information significantly improved the accuracy
of the initial diagnosis of arthritis. As another example,
Zhao et al. reported that the DNA methylation level at
the IFI44L locus distinguished SLE patients from healthy
controls, RA patients, and Sjögren’s syndrome patients,
suggesting its potential as a diagnostic marker for SLE
[43]. Those studies support the utility of genomic and
epigenomic data for improving clinical practice in
rheumatology, although further validation by prospective
studies in real clinical settings is required.

Attempts to improve the performance of the PRS
Although clinical application of the PRS to classify in-
creased risks of certain traits has become realistic, PRSs
developed by GWAS for a specific population tended to
underperform when tested in a different population [44,
45]. As most large-scale GWAS have been performed in
European populations, this might lead to health dispar-
ities among populations [45].
Some attempts to overcome this issue have already

been reported. Amariuta et al. reported that the trans-
ethnic portability of the PRS was significantly improved
by prioritizing variants with regulatory annotation which
was constructed based on epigenomic data [46]. Another
group reported that calculating the PRS based on vari-
ants discovered among diverse populations improved the
trans-ethnic portability of the PRS [47]. Although con-
ducting large-scale GWAS in diverse populations is also
an important direction [48], combination with other
omics data, such as epigenomic data, would improve the
performance of the PRS in the clinical setting.

Application of epigenomic data for multi-omics
analysis
As exemplified above, epigenomic data is a quite valu-
able resource for multi-omics analysis. Recently,
Encyclopedia of DNA elements (ENCODE) Project has
released their phase III data, which consists of wide var-
iety of epigenomic annotations from 5992 new experi-
mental datasets [49]. Together with Roadmap
Epigenomics data [50], these large-scaled epigenome
datasets inform cis-regulatory elements of variety of cell
types. As epigenomic data is not influenced by linkage
disequilibrium or allele frequencies, these data can be
utilized for prioritization of disease-associated genetic
variants in the context of precision medicine.

Application of expression quantitative trait loci
(eQTL) data for precision medicine
eQTL analysis is used to identify the association between
genetic variants and gene expression. During the past 10
years, large consortia including Geuvadis [51], GTEx
[52], DICE [53], and eQTLGen [54] performed eQTL
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analyses in various tissues and cell types, using large
sample sizes, and reported the effects of genetic variants
on gene expression. The resulting datasets are quite use-
ful for estimating the effects of disease-associated vari-
ants. Generally, majority of non-coding disease-
associated genetic variants are assumed to modulate the
expression of genes that play roles in disease pathogen-
esis. Thus, it is reasonable to integrate GWAS results
with eQTL data and estimate gene-level associations
with diseases to reduce the multiple testing burden and
facilitate biological interpretation. This approach, re-
ferred to as transcriptome-wide association studies
(TWAS), has garnered great interest, and many such
studies have been performed [55–57].
Integration of eQTL and GWAS datasets can be ap-

plied for patient-level estimation of disease risk. Mari-
gorta et al. developed a transcriptional risk score (TRS)
based on the gene expression data in ileal mucosal sam-
ples from Crohn’s disease patients, risk variants of
Crohn’s disease determined by GWAS, and the eQTL ef-
fects of these variants [58]. The TRS outperformed gen-
etic risk scores in terms of not only distinguishing
Crohn’s disease from healthy samples but also identify-
ing patients who will progress to complicated disease
[58]. Although further validation in other centers is war-
ranted, that study raises the possibility of treating gene
expression data derived from biopsy specimens as an
index for patient classification, in combination with
GWAS and eQTL data.
To enhance understanding of the functions of IMD-

associated genetic variants, their functions in immune
cells should be evaluated. Recently, we constructed an
eQTL atlas based on 28 types of immune cells (Immu-
NexUT; Immune Cell Gene Expression Atlas from the
University of Tokyo) [27]. Our atlas showed enrichment
of IMD-associated genetic variants in immune cell
eQTLs and identified a number of IMD-associated genes
and cell types. This information could be used to
prioritize disease-relevant cell types and genes and sub-
sequently stratify IMD patients in the future. In addition,
information on genetic variants associated with hetero-
geneity within a disease is limited so far. In a GWAS of
IBD, few genetic variants were associated with disease
prognosis [59]. The difficulty of clinically defining het-
erogeneity within a disease and the small number of pa-
tients with a rare disease entity make it a challenge to
identify disease heterogeneity-associated variants. Using
ImmuNexUT, we identified immune cell eQTL variants
that show heterogeneity in effect sizes in an inflamma-
tory context-dependent manner. These context-
dependent eGenes (genes possessing context-dependent
eQTL variants) are enriched in genes induced by inflam-
mation or vaccination, indicating their roles in diversify-
ing an individual’s response to inflammation. We

surmise that these context-dependent eQTL variants are
candidates for IMD heterogeneity and will aid
prioritization of variants and stratification of IMD
patients.

Conclusion
For predicting disease susceptibility, disease severity, and
treatment response, multi-omics data may play an im-
portant role in clinical practice in the near future. So far,
some attempts at patient stratification have been per-
formed using genomic, epigenomic, transcriptomic, and
clinical data; however, most of those studies were based
on information from a single level. Combination of
multi-level information will improve the prediction of
these outcomes. Construction of large-scale patient co-
horts with high-quality clinical data (e.g., treatment re-
sponse, clinical prognosis, and genomic, transcriptomic,
and epigenomic data, preferably from diseased tissues)
and refined analytic approaches to handle these data
would contribute to a better understanding of IMD biol-
ogy and accelerate precision medicine in IMD patients.
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