Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–87. doi:10.1016/j.cell.2011.08.039.
Article
CAS
PubMed
Google Scholar
Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49(3):507–21.
Article
CAS
PubMed
Google Scholar
Gerhardt H, Betsholtz C. How do endothelial cells orientate? EXS. 2005;94:3–15.
Google Scholar
Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12(9):551–64. doi:10.1038/nrm3176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61. doi:10.1038/nature09522.
Article
CAS
PubMed
Google Scholar
Mishra A, O’Farrell FM, Reynell C, Hamilton NB, Hall CN, Attwell D. Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nat Protoc. 2014;9(2):323–36. doi:10.1038/nprot.2014.019.
Article
CAS
PubMed
Google Scholar
Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215. doi:10.1016/j.devcel.2011.07.001.
Article
CAS
PubMed
Google Scholar
Hammes HP, Lin J, Wagner P, Feng Y, Vom Hagen F, Krzizok T, et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes. 2004;53:1104–10. doi:10.2337/diabetes.53.4.1104.
Article
CAS
PubMed
Google Scholar
Pfister F, Feng Y, Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes. 2008;57:2495–502. doi:10.2337/db08-0325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23. doi:10.1161/01.RES.0000182903.16652.d7.
Article
CAS
PubMed
Google Scholar
Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314(1):15–23. doi:10.1007/s00441-003-0745-x.
Article
PubMed
Google Scholar
Raza A, Franklin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol. 2010;85:593–8. doi:10.1002/ajh.21745.
Article
CAS
PubMed
Google Scholar
Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20(26):3218–25.
Article
CAS
PubMed
Google Scholar
Hammes HP, Feng Y, Pfister F, Brownlee M. Diabetic retinopathy: targeting vasoregression. Diabetes. 2011;60:9–16. doi:10.2337/db10-0454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55–60. doi:10.1038/nature13165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribatti D, Nico B, Crivellato E. The role of pericytes in angiogenesis. Int J Dev Biol. 2011;55(3):261–8. doi:10.1387/ijdb.103167dr.
Article
CAS
PubMed
Google Scholar
Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Perez-del-Pulgar S, et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res. 2003;66(2):102–12.
Article
CAS
PubMed
Google Scholar
Nakatsu MN, Davis J, Hughes CC. Optimized fibrin gel bead assay for the study of angiogenesis. J Vis Exp. 2007;3:186. doi:10.3791/186.
Google Scholar
Nakatsu MN, Hughes CC. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 2008;443:65–82. doi:10.1016/S0076-6879(08)02004-1.
Article
CAS
PubMed
Google Scholar
Nikolova G, Strilic B, Lammert E. The vascular niche and its basement membrane. Trends Cell Biol. 2007;17(1):19–25. doi:10.1016/j.tcb.2006.11.005.
Article
CAS
PubMed
Google Scholar
Zudaire E, Gambardella L, Kurcz C, Vermeren S. A computational tool for quantitative analysis of vascular networks. PLoS One. 2011;6(11):e27385. doi:10.1371/journal.pone.0027385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boettcher M, Gloe T, de Wit C. Semiautomatic quantification of angiogenesis. J Surg Res. 2010;162(1):132–9. doi:10.1016/j.jss.2008.12.009.
Article
PubMed
Google Scholar
Bouis D, Hospers GA, Meijer C, Molema G, Mulder NH. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis. 2001;4(2):91–102.
Article
CAS
PubMed
Google Scholar
Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7(11):1031–8.
CAS
PubMed
Google Scholar
Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009;25(11):1463–5. doi:10.1093/bioinformatics/btp184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi:10.1038/nmeth.2019.
Article
CAS
PubMed
Google Scholar
Mendel DB, Schreck RE, West DC, Li G, Strawn LM, Tanciongco SS, Vasile S, Shawver LK, Cherrington JM. The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res. 2000;6:4848–58.
CAS
PubMed
Google Scholar
Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell. 2009;17(4):505–15. doi:10.1016/j.devcel.2009.08.011.
Article
CAS
PubMed
Google Scholar
Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P, et al. ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res. 2008;102(10):1192–201. doi:10.1161/CIRCRESAHA.107.169805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Namkoong S, Kim CK, Cho YL, Kim JH, Lee H, Ha KS, et al. Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling. Cell Signal. 2009;21:906–15. doi:10.1016/j.cellsig.2009.01.038.
Article
CAS
PubMed
Google Scholar
Strilic B, Eglinger J, Krieg M, Zeeb M, Axnick J, Babal P, et al. Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr Biol. 2010;20(22):2003–9. doi:10.1016/j.cub.2010.09.061.
Article
CAS
PubMed
Google Scholar
Kachgal S, Putnam AJ. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 2011;14(1):47–59. doi:10.1007/s10456-010-9194-9.
Article
CAS
PubMed
Google Scholar
van Meeteren LA, Thorikay M, Bergqvist S, Pardali E, Stampino CG, Hu-Lowe D, et al. Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem. 2012;287(22):18551–61. doi:10.1074/jbc.M111.338103.
Article
PubMed
PubMed Central
Google Scholar
Wilson CW, Parker LH, Hall CJ, Smyczek T, Mak J, Crow A, et al. Rasip1 regulates vertebrate vascular endothelial junction stability through Epac1-Rap1 signaling. Blood. 2013;122(22):3678–90. doi:10.1182/blood-2013-02-483156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wimmer R, Cseh B, Maier B, Scherrer K, Baccarini M. Angiogenic sprouting requires the fine tuning of endothelial cell cohesion by the Raf-1/Rok-alpha complex. Dev Cell. 2012;22(1):158–71. doi:10.1016/j.devcel.2011.11.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng W, Tammela T, Yamamoto M, Anisimov A, Holopainen T, Kaijalainen S, et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood. 2011;118(4):1154–62. doi:10.1182/blood-2010-11-317800.
Article
CAS
PubMed
Google Scholar
Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33. doi:10.1038/nprot.2007.30.
Article
CAS
PubMed
Google Scholar
Arganda-Carreras I, Fernandez-Gonzalez R, Munoz-Barrutia A, Ortiz-De-Solorzano C. 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Tech. 2010;73(11):1019–29. doi:10.1002/jemt.20829.
Article
PubMed
Google Scholar