Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 2012;23:582–90. https://doi.org/10.1016/j.tem.2012.05.005.
Article
CAS
PubMed
Google Scholar
Okamoto K, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97:1295–349.
Article
CAS
PubMed
Google Scholar
Wong BR, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem. 1997;272:25190–4. https://doi.org/10.1074/jbc.272.40.25190.
Article
CAS
PubMed
Google Scholar
Anderson DM, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–9. https://doi.org/10.1038/36593.
Article
CAS
PubMed
Google Scholar
Kong YY, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23. https://doi.org/10.1038/16852.
Article
CAS
PubMed
Google Scholar
Dougall WC, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412–24. https://doi.org/10.1101/gad.13.18.2412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuda E, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun. 1997;234:137–42. https://doi.org/10.1006/bbrc.1997.6603.
Article
CAS
PubMed
Google Scholar
Simonet WS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19. https://doi.org/10.1016/s0092-8674(00)80209-3.
Article
CAS
PubMed
Google Scholar
Lacey DL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76. https://doi.org/10.1016/s0092-8674(00)81569-x.
Article
CAS
PubMed
Google Scholar
Yasuda H, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95:3597–602. https://doi.org/10.1073/pnas.95.7.3597.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa N, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253:395–400. https://doi.org/10.1006/bbrc.1998.9788.
Article
CAS
PubMed
Google Scholar
Nelson CA, Warren JT, Wang MW, Teitelbaum SL, Fremont DH. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure. 2012;20:1971–82. https://doi.org/10.1016/j.str.2012.08.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakashima T, et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-κB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000;275:768–75.
Article
CAS
PubMed
Google Scholar
Nagashima K, et al. Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat Immunol. 2017;18:675–82. https://doi.org/10.1038/ni.3732.
Article
CAS
PubMed
Google Scholar
Tsukasaki M, et al. Host defense against oral microbiota by bone-damaging T cells. Nat Commun. 2018;9:701. https://doi.org/10.1038/s41467-018-03147-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong J, et al. Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone loss. Nat Commun. 2018;9:2909. https://doi.org/10.1038/s41467-018-05244-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asano T, et al. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat Metabol. 2019. https://doi.org/10.1038/s42255-019-0104-1.
Article
PubMed
Google Scholar
Ikebuchi Y, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561:195–200. https://doi.org/10.1038/s41586-018-0482-7.
Article
CAS
PubMed
Google Scholar
Ono T, Nakashima T. Recent advances in osteoclast biology. Histochem Cell Biol. 2018;149:325–41. https://doi.org/10.1007/s00418-018-1636-2.
Article
CAS
PubMed
Google Scholar
Nakashima T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4. https://doi.org/10.1038/nm.2452.
Article
CAS
PubMed
Google Scholar
Xiong J, et al. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17:1235–41. https://doi.org/10.1038/nm.2448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong J, et al. Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone. PLoS One. 2015;10:e0138189. https://doi.org/10.1371/journal.pone.0138189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sobacchi C, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39:960–2. https://doi.org/10.1038/ng2076.
Article
CAS
PubMed
Google Scholar
Guerrini MM, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83:64–76. https://doi.org/10.1016/j.ajhg.2008.06.015.
Article
CAS
PubMed
Google Scholar
Nakatsuka K, Nishizawa Y, Ralston SH. Phenotypic characterization of early onset Paget’s disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res. 2003;18:1381–5. https://doi.org/10.1359/jbmr.2003.18.8.1381.
Article
CAS
PubMed
Google Scholar
Hughes AE, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24:45–8. https://doi.org/10.1038/71667.
Article
CAS
PubMed
Google Scholar
Whyte MP, et al. Juvenile Paget's disease with heterozygous duplication within TNFRSF11A encoding RANK. Bone. 2014;68:153–61. https://doi.org/10.1016/j.bone.2014.07.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palenzuela L, et al. Familial expansile osteolysis in a large Spanish kindred resulting from an insertion mutation in the TNFRSF11A gene. J Med Genet. 2002;39:e67. https://doi.org/10.1136/jmg.39.10.e67.
Article
Google Scholar
Johnson-Pais TL, et al. Identification of a novel tandem duplication in exon 1 of the TNFRSF11A gene in two unrelated patients with familial expansile osteolysis. J Bone Min Res. 2003;18:376–80. https://doi.org/10.1359/jbmr.2003.18.2.376.
Article
CAS
PubMed
Google Scholar
Elahi E, et al. Intragenic SNP haplotypes associated with 84dup18 mutation in TNFRSF11A in four FEO pedigrees suggest three independent origins for this mutation. J Bone Miner Metab. 2007;25:159–64. https://doi.org/10.1007/s00774-007-0748-x.
Article
CAS
PubMed
Google Scholar
Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002;17:26–9. https://doi.org/10.1359/jbmr.2002.17.1.26.
Article
CAS
PubMed
Google Scholar
Schafer AL, et al. Panostotic expansile bone disease with massive jaw tumor formation and a novel mutation in the signal peptide of RANK. J Bone Miner Res. 2014;29:911–21. https://doi.org/10.1002/jbmr.2094.
Article
CAS
PubMed
Google Scholar
Whyte MP, et al. Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med. 2002;347:175–84. https://doi.org/10.1056/NEJMoa013096.
Article
CAS
PubMed
Google Scholar
Cundy T, et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet. 2002;11:2119–27. https://doi.org/10.1093/hmg/11.18.2119.
Article
CAS
PubMed
Google Scholar
Chong B, et al. Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res. 2003;18:2095–104. https://doi.org/10.1359/jbmr.2003.18.12.2095.
Article
CAS
PubMed
Google Scholar
Whyte MP, et al. Juvenile Paget's disease: the second reported, oldest patient is homozygous for the TNFRSF11B “Balkan” mutation (966_969delTGACinsCTT), which elevates circulating immunoreactive osteoprotegerin levels. J Bone Miner Res. 2007;22:938–46. https://doi.org/10.1359/jbmr.070307.
Article
CAS
PubMed
Google Scholar
Naot D, et al. Novel homozygous mutations in the osteoprotegerin gene TNFRSF11B in two unrelated patients with juvenile Paget's disease. Bone. 2014;68:6–10. https://doi.org/10.1016/j.bone.2014.07.034.
Article
CAS
PubMed
Google Scholar
Shoji-Matsunaga A, et al. Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Sci Rep. 2017;7:8753. https://doi.org/10.1038/s41598-017-09326-7.
Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–76. https://doi.org/10.1016/s0140-6736(18)32112-3.
Article
CAS
Google Scholar
Onal M, et al. Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem. 2012;287:29851–60. https://doi.org/10.1074/jbc.M112.377945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujiwara Y, et al. RANKL (receptor activator of NFκB ligand) produced by osteocytes is required for the increase in B cells and bone loss caused by estrogen deficiency in mice. J Biol Chem. 2016;291:24838–50. https://doi.org/10.1074/jbc.M116.742452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawai M, Modder UI, Khosla S, Rosen CJ. Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov. 2011;10:141–56. https://doi.org/10.1038/nrd3299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukumoto S, Matsumoto T. Recent advances in the management of osteoporosis. F1000Res. 2017;6:625. https://doi.org/10.12688/f1000research.10682.1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mullard A. FDA approves first-in-class osteoporosis drug. Nat Rev Drug Discov. 2019;18:411. https://doi.org/10.1038/d41573-019-00083-y.
Article
CAS
PubMed
Google Scholar
Wijenayaka AR, et al. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6:e25900. https://doi.org/10.1371/journal.pone.0025900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu X, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci U S A. 2015;112:E478–86. https://doi.org/10.1073/pnas.1409857112.
Article
CAS
Google Scholar
Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292–304. https://doi.org/10.1038/nri2062.
Article
CAS
PubMed
Google Scholar
Danks L, et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 2016;75:1187–95. https://doi.org/10.1136/annrheumdis-2014-207137.
Article
CAS
PubMed
Google Scholar
Sato K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203:2673–82. https://doi.org/10.1084/jem.20061775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komatsu N, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20:62–8. https://doi.org/10.1038/nm.3432.
Article
PubMed
Google Scholar
Takeuchi T, et al. Effects of the anti-RANKL antibody denosumab on joint structural damage in patients with rheumatoid arthritis treated with conventional synthetic disease-modifying antirheumatic drugs (DESIRABLE study): a randomised, double-blind, placebo-controlled phase 3 trial. Ann Rheum Dis. 2019;78:899–907. https://doi.org/10.1136/annrheumdis-2018-214827.
Article
CAS
PubMed
Google Scholar
Tanaka S. RANKL is a therapeutic target of bone destruction in rheumatoid arthritis. F1000Res. 2019;8. https://doi.org/10.12688/f1000research.17296.1.
Article
CAS
Google Scholar
Ono T. Why and how do teeth come off? -New insights into the tooth loss during periodontitis-. Dent Oral Craniofac Res. 2018;4. https://doi.org/10.15761/docr.1000259.
Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019. https://doi.org/10.1038/s41577-019-0178-8.
Article
CAS
PubMed
Google Scholar
Penna S, Capo V, Palagano E, Sobacchi C, Villa A. One Disease, Many Genes: Implications for the Treatment of Osteopetroses. Front Endocrinol. 2019;10:85. https://doi.org/10.3389/fendo.2019.00085.
Coudert AE, de Vernejoul MC, Muraca M, Del Fattore A. Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton. Int J Endocrinol. 2015;2015:372156. https://doi.org/10.1155/2015/372156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance: Lessons from Mice. Trends Immunol. 2019;40:279–91. https://doi.org/10.1016/j.it.2019.01.011.
Article
CAS
PubMed
Google Scholar
Akiyama T, Shinzawa M, Akiyama N. RANKL-RANK interaction in immune regulatory systems. World J Orthop. 2012;3:142–50. https://doi.org/10.5312/wjo.v3.i9.142.
Article
PubMed
PubMed Central
Google Scholar
Anderson MS, Su MA. AIRE expands: new roles in immune tolerance and beyond. Nat Rev Immunol. 2016;16:247–58. https://doi.org/10.1038/nri.2016.9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossi SW, et al. RANK signals from CD4+3− inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med. 2007;204:1267–72. https://doi.org/10.1084/jem.20062497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hikosaka Y, et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity. 2008;29:438–50. https://doi.org/10.1016/j.immuni.2008.06.018.
Article
CAS
PubMed
Google Scholar
Roberts NA, et al. Rank signaling links the development of invariant γδ T cell progenitors and Aire+ medullary epithelium. Immunity. 2012;36:427–37. https://doi.org/10.1016/j.immuni.2012.01.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
White AJ, et al. An essential role for medullary thymic epithelial cells during the intrathymic development of invariant NKT cells. J Immunol. 2014;192:2659–66. https://doi.org/10.4049/jimmunol.1303057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang JE, Turley SJ. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol. 2015;36:30–9. https://doi.org/10.1016/j.it.2014.11.003.
Article
CAS
PubMed
Google Scholar
Katakai T. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer. Front Immunol. 2012;3:200. https://doi.org/10.3389/fimmu.2012.00200.
Article
PubMed
PubMed Central
Google Scholar
Mueller CG, Hess E. Emerging functions of RANKL in lymphoid tissues. Front Immunol. 2012;3:261. https://doi.org/10.3389/fimmu.2012.00261.
Article
PubMed
PubMed Central
Google Scholar
Vondenhoff MF, et al. LTβR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J Immunol. 2009;182:5439–45. https://doi.org/10.4049/jimmunol.0801165.
Article
CAS
PubMed
Google Scholar
Camara A, et al. Lymph node mesenchymal and endothelial stromal cells cooperate via the RANK-RANKL cytokine axis to shape the sinusoidal macrophage niche. Immunity. 2019;50:1467–81 e1466. https://doi.org/10.1016/j.immuni.2019.05.008.
Article
CAS
PubMed
Google Scholar
Spits H, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9. https://doi.org/10.1038/nri3365.
Article
CAS
PubMed
Google Scholar
Panda SK, Colonna M. Innate lymphoid cells in mucosal immunity. Front Immunol. 2019;10:861. https://doi.org/10.3389/fimmu.2019.00861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sawa S, et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science. 2010;330:665–9. https://doi.org/10.1126/science.1194597.
Article
CAS
PubMed
Google Scholar
Sawa S, et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol. 2011;12:320–6. https://doi.org/10.1038/ni.2002.
Article
CAS
PubMed
Google Scholar
Bando JK, et al. The tumor necrosis factor superfamily member RANKL suppresses effector cytokine production in group 3 innate lymphoid cells. Immunity. 2018;48:1208–19 e1204. https://doi.org/10.1016/j.immuni.2018.04.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lugering A, et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin Exp Immunol. 2010;160:440–9. https://doi.org/10.1111/j.1365-2249.2010.04103.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohno H. Intestinal M cells. J Biochem. 2016;159:151–60. https://doi.org/10.1093/jb/mvv121.
Article
CAS
PubMed
Google Scholar
Knoop KA, et al. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J Immunol. 2009;183:5738–47. https://doi.org/10.4049/jimmunol.0901563.
Article
CAS
PubMed
Google Scholar
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol. 2017;8:1676. https://doi.org/10.3389/fimmu.2017.01676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honda T, Egawa G, Kabashima K. Antigen presentation and adaptive immune responses in skin. Int Immunol. 2019;31:423–9. https://doi.org/10.1093/intimm/dxz005.
Article
PubMed
Google Scholar
Soontrapa K, et al. Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc Natl Acad Sci U S A. 2011;108:6668–73. https://doi.org/10.1073/pnas.1018625108.
Article
PubMed
PubMed Central
Google Scholar
Loser K, et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12:1372–9. https://doi.org/10.1038/nm1518.
Article
CAS
PubMed
Google Scholar
Hart PH, Norval M. Ultraviolet radiation-induced immunosuppression and its relevance for skin carcinogenesis. Photochem Photobiol Sci. 2018;17:1872–84. https://doi.org/10.1039/c7pp00312a.
Article
CAS
PubMed
Google Scholar
Forrester JV, McMenamin PG, Dando SJ. CNS infection and immune privilege. Nat Rev Neurosci. 2018;19:655–71. https://doi.org/10.1038/s41583-018-0070-8.
Article
CAS
PubMed
Google Scholar
Guerrini MM, et al. Inhibition of the TNF family cytokine RANKL prevents autoimmune inflammation in the central nervous system. Immunity. 2015;43:1174–85. https://doi.org/10.1016/j.immuni.2015.10.017.
Article
CAS
PubMed
Google Scholar
Shimamura M, et al. OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci U S A. 2014;111:8191–6. https://doi.org/10.1073/pnas.1400544111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shichita T, et al. Pivotal role of cerebral interleukin-17-producing γδ T cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15:946–50. https://doi.org/10.1038/nm.1999.
Article
CAS
PubMed
Google Scholar
Shichita T, et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med. 2012;18:911–7. https://doi.org/10.1038/nm.2749.
Article
CAS
PubMed
Google Scholar
Bonaventura A, et al. Update on inflammatory biomarkers and treatments in ischemic stroke. Int J Mol Sci. 2016;17. https://doi.org/10.3390/ijms17121967.
Article
PubMed Central
Google Scholar
Fata JE, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103:41–50. https://doi.org/10.1016/s0092-8674(00)00103-3.
Article
CAS
PubMed
Google Scholar
Cao Y, et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107:763–75. https://doi.org/10.1016/s0092-8674(01)00599-2.
Article
CAS
PubMed
Google Scholar
Rao S, Cronin SJF, Sigl V, Penninger JM. RANKL and RANK: From Mammalian Physiology to Cancer Treatment. Trends Cell Biol. 2018;28:213–23. https://doi.org/10.1016/j.tcb.2017.11.001.
Article
CAS
PubMed
Google Scholar
Hanada R, et al. Central control of fever and female body temperature by RANKL/RANK. Nature. 2009;462:505–9. https://doi.org/10.1038/nature08596.
Article
CAS
PubMed
Google Scholar
Panizo S, et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ Res. 2009;104:1041–8. https://doi.org/10.1161/circresaha.108.189001.
Article
CAS
PubMed
Google Scholar
Osako MK, et al. Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ Res. 2010;107:466–75. https://doi.org/10.1161/circresaha.110.216846.
Article
CAS
PubMed
Google Scholar
Osako MK, et al. Cross-talk of receptor activator of nuclear factor-κB ligand signaling with renin-angiotensin system in vascular calcification. Arterioscler Thromb Vasc Biol. 2013;33:1287–96. https://doi.org/10.1161/atvbaha.112.301099.
Article
CAS
PubMed
Google Scholar
Duheron V, et al. Receptor activator of NF-κB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit. Proc Natl Acad Sci U S A. 2011;108:5342–7. https://doi.org/10.1073/pnas.1013054108.
Article
CAS
Google Scholar
Kiechl S, et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013;19:358–63. https://doi.org/10.1038/nm.3084.
Article
CAS
PubMed
Google Scholar
Dufresne SS, et al. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles. Am J Physiol Cell Physiol. 2016;310:C663–72. https://doi.org/10.1152/ajpcell.00285.2015.
Article
PubMed
PubMed Central
Google Scholar
Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest. 2019;129:3214–23. https://doi.org/10.1172/jci125915.
Article
PubMed
PubMed Central
Google Scholar
Peters S, Clezardin P, Marquez-Rodas I, Niepel D, Gedye C. The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clin Transl Oncol. 2019;21:977–91. https://doi.org/10.1007/s12094-018-02023-5.
Article
CAS
PubMed
Google Scholar
Gonzalez-Suarez E, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7. https://doi.org/10.1038/nature09495.
Article
CAS
PubMed
Google Scholar
Schramek D, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468:98–102. https://doi.org/10.1038/nature09387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nolan E, et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat Med. 2016;22:933–9. https://doi.org/10.1038/nm.4118.
Article
CAS
PubMed
Google Scholar
Sigl V, et al. RANKL/RANK control Brca1 mutation. Cell Res. 2016;26:761–74. https://doi.org/10.1038/cr.2016.69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao S, et al. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer. Genes Dev. 2017;31:2099–112. https://doi.org/10.1101/gad.304162.117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raje NS, Bhatta S, Terpos E. Role of the RANK/RANKL Pathway in Multiple Myeloma. Clin Cancer Res. 2019;25:12–20. https://doi.org/10.1158/1078-0432.ccr-18-1537.
Article
PubMed
Google Scholar
Lawson MA, et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun. 2015;6:8983. https://doi.org/10.1038/ncomms9983.
Article
CAS
PubMed
Google Scholar
de Groot AF, Appelman-Dijkstra NM, van der Burg SH, Kroep JR. The anti-tumor effect of RANKL inhibition in malignant solid tumors - A systematic review. Cancer Treat Rev. 2018;62:18–28. https://doi.org/10.1016/j.ctrv.2017.10.010.
Article
CAS
PubMed
Google Scholar
Capietto AH, Faccio R. Immune regulation of bone metastasis. Bonekey Rep. 2014;3:600. https://doi.org/10.1038/bonekey.2014.95.
Jones DH, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440:692–6. https://doi.org/10.1038/nature04524.
Article
CAS
PubMed
Google Scholar
Renema N, Navet B, Heymann MF, Lezot F, Heymann D. RANK-RANKL signalling in cancer. Biosci Rep. 2016;36. https://doi.org/10.1042/bsr20160150.
Rachner TD, et al. Prognostic value of RANKL/OPG serum levels and disseminated tumor cells in nonmetastatic breast cancer. Clin Cancer Res. 2019;25:1369–78. https://doi.org/10.1158/1078-0432.CCR-18-2482.
Article
PubMed
Google Scholar
Celia-Terrassa T, Kang Y. Metastatic niche functions and therapeutic opportunities. Nat Cell Biol. 2018;20:868–77. https://doi.org/10.1038/s41556-018-0145-9.
Article
CAS
PubMed
Google Scholar
Nakai Y, et al. Efficacy of an orally active small-molecule inhibitor of RANKL in bone metastasis. Bone Res. 2019;7:1. https://doi.org/10.1038/s41413-018-0036-5.
Article
CAS
PubMed
PubMed Central
Google Scholar