Rahimi N. Defenders and challengers of endothelial barrier function. Front Immunol. 2017;8:1847.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boulanger CM. Highlight on endothelial activation and beyond. Arterioscler Thromb Vasc Biol. 2018;38(12):e198–201.
Article
PubMed
CAS
Google Scholar
Marcos-Ramiro B, García-Weber D, Millán J. TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost. 2014;112(6):1088–102.
PubMed
CAS
Google Scholar
Reglero-Real N, Colom B, Bodkin JV, et al. Endothelial cell junctional adhesion molecules: role and regulation of expression in inflammation. Arterioscler Thromb Vasc Biol. 2016;36(10):2048–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–21.
Article
PubMed
CAS
Google Scholar
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007;49(21):2073–80.
Article
PubMed
Google Scholar
Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature. 2005;438(7070):960–6.
Article
PubMed
CAS
Google Scholar
Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol. 2016;43(11):1021–8.
Article
PubMed
CAS
Google Scholar
Herrmann J, Lerman LO, Lerman A. On to the road to degradation: atherosclerosis and the proteasome. Cardiovasc Res. 2010;85(2):291–302.
Article
PubMed
CAS
Google Scholar
Rahimi N. The ubiquitin-proteasome system meets angiogenesis. Mol Cancer Ther. 2012;11(3):538–48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stangl K, Stangl V. The ubiquitin-proteasome pathway and endothelial (dys)function. Cardiovasc Res. 2010;85(2):281–90.
Article
PubMed
CAS
Google Scholar
Miyazaki T, Miyazaki A. Defective protein catabolism in atherosclerotic vascular inflammation. Front Cardiovasc Med. 2017;4:79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miyazaki T, Miyazaki A. Dysregulation of calpain proteolytic systems underlies degenerative vascular disorders. J Atheroscler Thromb. 2018;25(1):1–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miyazaki T, Koya T, Kigawa Y, et al. Calpain and atherosclerosis. J Atheroscler Thromb. 2013;20(3):228–37.
Article
PubMed
CAS
Google Scholar
Goll DE, Thompson VF, Li H, et al. The calpain system. Physiol Rev. 2003;83(3):731–801.
Article
PubMed
CAS
Google Scholar
Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. Biochim Biophys Acta. 1824;2012:224–36.
Google Scholar
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov. 2016;15(12):854–76.
Article
PubMed
CAS
Google Scholar
Miyazaki T, Honda K, Ohata H. m-Calpain antagonizes RhoA overactivation and endothelial barrier dysfunction under disturbed shear conditions. Cardiovasc Res. 2010;85(3):530–41.
Article
PubMed
CAS
Google Scholar
Scalia R, Gong Y, Berzins B, et al. Hyperglycemia is a major determinant of albumin permeability in diabetic microcirculation: the role of mu-calpain. Diabetes. 2007;56(7):1842–9.
Article
PubMed
CAS
Google Scholar
Miyazaki T, Taketomi Y, Takimoto M, et al. m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis. Circulation. 2011;124(23):2522–32.
Article
PubMed
CAS
Google Scholar
Teng X, Ji C, Zhong H, Zheng D, et al. Selective deletion of endothelial cell calpain in mice reduces diabetic cardiomyopathy by improving angiogenesis. Diabetologia. 2019;62(5):860–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsubokawa T, Solaroglu I, Yatsushige H, et al. Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke. 2006;37(7):1888–94.
Article
PubMed
CAS
Google Scholar
Nie Q, Zhu L, Zhang L, et al. Astragaloside IV protects against hyperglycemia-induced vascular endothelial dysfunction by inhibiting oxidative stress and Calpain-1 activation. Life Sci. 2019;232:116662.
Article
PubMed
CAS
Google Scholar
Quiniou C, Sennlaub F, Beauchamp MH, et al. Dominant role for calpain in thromboxane-induced neuromicrovascular endothelial cytotoxicity. J Pharmacol Exp Ther. 2006;316(2):618–27.
Article
PubMed
CAS
Google Scholar
Siuda D, Randriamboavonjy V, Fleming I. Regulation of calpain 2 expression by miR-223 and miR-145. Biochim Biophys Acta Gene Regul Mech. 2019;1862(10):194438.
Article
PubMed
CAS
Google Scholar
Ding ZJ, Chen X, Tang XX, et al. Apoptosis-inducing factor and calpain upregulation in glutamate-induced injury of rat spiral ganglion neurons. Mol Med Rep. 2015;12(2):1685–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao M, Yang Y, Bi X, et al. Acetylcholine attenuated TNF-α-induced apoptosis in H9c2 cells: role of calpain and the p38-MAPK pathway. Cell Physiol Biochem. 2015;36(5):1877–89.
Article
PubMed
CAS
Google Scholar
Zawaski K, Gruebele A, Kaplan D, et al. Evidence for enhanced expression of c-fos, c-jun, and the Ca(2+)-activated neutral protease in rat liver following carbon tetrachloride administration. Biochem Biophys Res Commun. 1993;197(2):585–90.
Article
PubMed
CAS
Google Scholar
Miyazaki T, Taketomi Y, Saito Y, et al. Calpastatin counteracts pathological angiogenesis by inhibiting suppressor of cytokine signaling 3 degradation in vascular endothelial cells. Circ Res. 2015;116(7):1170–81.
Article
PubMed
CAS
Google Scholar
Ojima K, Kawabata Y, Nakao H, et al. Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. J Clin Invest. 2010;120(8):2672–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hata S, Abe M, Suzuki H, et al. Calpain 8/nCL-2 and calpain 9/nCL-4 constitute an active protease complex, G-calpain, involved in gastric mucosal defense. PLoS Genet. 2010;6(7):e1001040.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miyazaki T, Tonami K, Hata S, et al. Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing. J Clin Invest. 2016;126(9):3417–32.
Article
PubMed
PubMed Central
Google Scholar
Miyazaki T, Miyazaki A. Impact of dysfunctional protein catabolism on macrophage cholesterol handling. Curr Med Chem. 2019;26(9):1631–43.
Article
PubMed
CAS
Google Scholar
Miyazaki T, Miyazaki A. Emerging roles of calpain proteolytic systems in macrophage cholesterol handling. Cell Mol Life Sci. 2017;74(16):3011–21.
Article
PubMed
CAS
Google Scholar
Nassar D, Letavernier E, Baud L, et al. Calpain activity is essential in skin wound healing and contributes to scar formation. PLoS One. 2012;7(5):e37084.
Article
PubMed
PubMed Central
CAS
Google Scholar
Greaves NS, Ashcroft KJ, Baguneid M, et al. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci. 2013;72(3):206–17.
Article
PubMed
CAS
Google Scholar
Miyazaki T, Haraguchi S, Kim-Kaneyama JR, et al. Endothelial calpain systems orchestrate myofibroblast differentiation during wound healing. FASEB J. 2019;33(2):2037–46.
Article
PubMed
CAS
Google Scholar
Letavernier B, Zafrani L, Nassar D, et al. Calpains contribute to vascular repair in rapidly progressive form of glomerulonephritis: potential role of their externalization. Arterioscler Thromb Vasc Biol. 2012;32(2):335–42.
Article
PubMed
CAS
Google Scholar
Nishihara H, Nakagawa Y, Ishikawa H, et al. Matrix vesicles and media vesicles as nonclassical pathways for the secretion of m-Calpain from MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;285(3):845–53.
Article
PubMed
CAS
Google Scholar
Hanouna G, Tang E, Perez J, et al. Preventing calpain externalization by reducing ABCA1 activity with probenecid limits melanoma angiogenesis and development. J Invest Dermatol. 2020;140(2):445–54.
Article
PubMed
CAS
Google Scholar
Limaye PB, Apte UM, Shankar K, et al. Calpain released from dying hepatocytes mediates progression of acute liver injury induced by model hepatotoxicants. Toxicol Appl Pharmacol. 2003;191(3):211–26.
Article
PubMed
CAS
Google Scholar
Pepper MS, Mandriota SJ, Jeltsch M, et al. Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J Cell Physiol. 1998;177(3):439–52.
Article
PubMed
CAS
Google Scholar
Ma H, Tochigi A, Shearer TR, et al. Calpain inhibitor SNJ-1945 attenuates events prior to angiogenesis in cultured human retinal endothelial cells. J Ocul Pharmacol Ther. 2009;25(5):409–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoang MV, Smith LE, Senger DR. Calpain inhibitors reduce retinal hypoxia in ischemic retinopathy by improving neovascular architecture and functional perfusion. Biochim Biophys Acta. 2011;1812(4):549–57.
Article
PubMed
CAS
Google Scholar
Zheng X, Zhou AX, Rouhi P, et al. Hypoxia-induced and calpain-dependent cleavage of filamin A regulates the hypoxic response. Proc Natl Acad Sci U S A. 2014;111(7):2560–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saito M, Suzuki Y, Yano S, et al. Proteolytic inactivation of anti-angiogenic vasohibin-1 by cancer cells. J Biochem. 2016;160(4):227–32.
Article
PubMed
CAS
Google Scholar
Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86(1):279–367.
Article
PubMed
CAS
Google Scholar
Wójciak-Stothard B, Potempa S, Eichholtz T, et al. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci. 2001;114(Pt 7):1343–55.
PubMed
Google Scholar
Gavard J. Breaking the VE-cadherin bonds. FEBS Lett. 2009;583(1):1–6.
Article
PubMed
CAS
Google Scholar
Corada M, Mariotti M, Thurston G, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A. 1999;96(17):9815–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bobryshev YV, Cherian SM, Inder SJ, et al. Neovascular expression of VE-cadherin in human atherosclerotic arteries and its relation to intimal inflammation. Cardiovasc Res. 1999;43(4):1003–17.
Article
PubMed
CAS
Google Scholar
Foteinos G, Hu Y, Xiao Q, et al. Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation. 2008;117(14):1856–63.
Article
PubMed
Google Scholar
Su W, Kowalczyk AP. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell. 2017;28(1):76–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Friedrich EE, Hong Z, Xiong S, et al. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. Proc Natl Acad Sci U S A. 2019;116(26):12980–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yazdani S, Jaldin-Fincati JR, Pereira RVS, et al. Endothelial cell barriers: transport of molecules between blood and tissues. Traffic. 2019;20(6):390–403.
Article
PubMed
CAS
Google Scholar
Ueno M. Molecular anatomy of the brain endothelial barrier: an overview of the distributional features. Curr Med Chem. 2007;14(11):1199–206.
Article
PubMed
CAS
Google Scholar
Alluri H, Grimsley M, Anasooya Shaji C, et al. Attenuation of blood-brain barrier breakdown and hyperpermeability by calpain inhibition. J Biol Chem. 2016;291(53):26958–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang T, Wang L, Moreno-Vinasco L, et al. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation. Part Fibre Toxicol. 2012;9:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH. Disruption of the mouse μ-calpain gene reveals an essential role in platelet function. Mol Cell Biol. 2001;21(6):2213–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Takano J, Mihira N, Fujioka R, Hosoki E, Chishti AH, Saido TC. Vital role of the calpain-calpastatin system for placental-integrity-dependent embryonic survival. Mol Cell Biol. 2011;31(19):4097–106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Choi HJ, Zhang H, Park H, et al. Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun. 2015;6:6943.
Article
PubMed
CAS
Google Scholar
Weber JJ, Ortiz Rios MM, Riess O, et al. The calpain-suppressing effects of olesoxime in Huntington’s disease. Rare Dis. 2016;4(1):e1153778.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clemens LE, Weber JJ, Wlodkowski TT, et al. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat. Brain. 2015;138(Pt 12):3632–53.
Article
PubMed
Google Scholar