Roth DB. V(D)J Recombination: Mechanism, Errors, and Fidelity. Microbiol Spectr. 2014; 2(6):313–24. https://doi.org/10.1128/microbiolspec.MDNA3-0041-2014.
Article
CAS
Google Scholar
Tonegawa S. Somatic generation of antibody diversity. Nature. 1983; 302(5909):575–81. https://doi.org/10.1038/302575a0.
Article
CAS
PubMed
Google Scholar
Murphy K, Weaver C. Janeway’s Immunobiology, 9th ed (Chap. 10). New York: Garland Science, Taylor & Francis Group, LLC; 2017, pp. 399–421.
Google Scholar
Xing Y, Hogquist KA. T-Cell Tolerance: Central and Peripheral. Cold Spring Harb Perspect Biol. 2012; 4(6):006957. https://doi.org/10.1101/cshperspect.a006957.
Article
CAS
Google Scholar
Sprent J, Kishimoto H. The thymus and central tolerance. Phil Trans R Soc B Biol Sci. 2001; 356(1409):609–16. https://doi.org/10.1098/rstb.2001.0846.
Article
CAS
Google Scholar
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T Cells and Immune Tolerance. Cell. 2008; 133(5):775–87. https://doi.org/10.1016/j.cell.2008.05.009.
Article
CAS
PubMed
Google Scholar
Lee HM, Bautista JL, Scott-Browne J, Mohan JF, Hsieh CS. A Broad Range of Self-Reactivity Drives Thymic Regulatory T Cell Selection to Limit Responses to Self. Immunity. 2012; 37(3):475–86. https://doi.org/10.1016/j.immuni.2012.07.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ, Ramarathinam SH, Eggenhuizen PJ, Loh KL, Watson KA, Gan PY, Alikhan MA, Dudek NL, Handel A, Hudson BG, Fugger L, Power DA, Holt SG, Coates PT, Gregersen JW, Purcell AW, Holdsworth SR, La Gruta NL, Reid HH, Rossjohn J, Kitching AR. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature. 2017; 545(7653):243–7. https://doi.org/10.1038/nature22329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leonard JD, Gilmore DC, Dileepan T, Nawrocka WI, Chao JL, Schoenbach MH, Jenkins MK, Adams EJ, Savage PA. Identification of Natural Regulatory T Cell Epitopes Reveals Convergence on a Dominant Autoantigen. Immunity. 2017; 47(1):107–1178. https://doi.org/10.1016/j.immuni.2017.06.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Derbinski J, Gäbler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med. 2005; 202(1):33–45. https://doi.org/10.1084/jem.20050471.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood. 2006; 108(12):3777–85.
Article
CAS
PubMed
Google Scholar
Lkhagvasuren E, Sakata M, Ohigashi I, Takahama Y. Lymphotoxin β Receptor Regulates the Development of CCL21-Expressing Subset of Postnatal Medullary Thymic Epithelial Cells. J Immunol. 2013; 190(10):5110–7. https://doi.org/10.4049/jimmunol.1203203.
Article
CAS
PubMed
Google Scholar
Onder L, Nindl V, Scandella E, Chai Q, Cheng HW, Caviezel-Firner S, Novkovic M, Bomze D, Maier R, Mair F, Ledermann B, Becher B, Waisman A, Ludewig B. Alternative NF- κB signaling regulates mTEC differentiation from podoplanin-expressing presursors in the cortico-medullary junction. Eur J Immunol. 2015; 45(8):2218–31. https://doi.org/10.1002/eji.201545677.
Article
CAS
PubMed
Google Scholar
Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR, Wang H, Rattay K, Khan IS, Metzger TC, Pollack JL, et al.Thymic tuft cells promote an il-4-enriched medulla and shape thymocyte development. Nature. 2018; 559(7715):627–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, David E, Machado A, Chuprin A, Tóth B, et al.Single-cell mapping of the thymic stroma identifies il-25-producing tuft epithelial cells. Nature. 2018; 559(7715):622–6.
Article
CAS
PubMed
Google Scholar
Ohnmacht C, Pullner A, King SBS, Drexler I, Meier S, Brocker T, Voehringer D. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med. 2009; 206(3):549–59. https://doi.org/10.1084/jem.20082394.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallegos AM, Bevan MJ. Central Tolerance to Tissue-specific Antigens Mediated by Direct and Indirect Antigen Presentation. J Exp Med. 2004; 200(8):1039–49. https://doi.org/10.1084/jem.20041457.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koble C, Kyewski B. The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J Exp Med. 2009; 206(7):1505–13. https://doi.org/10.1084/jem.20082449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baba T, Nakamoto Y, Mukaida N. Crucial Contribution of Thymic Sirp α + Conventional Dendritic Cells to Central Tolerance against Blood-Borne Antigens in a CCR2-Dependent Manner. J Immunol. 2009; 183(5):3053–63. https://doi.org/10.4049/jimmunol.0900438.
Article
CAS
PubMed
Google Scholar
Atibalentja DF, Byersdorfer CA, Unanue ER. Thymus-Blood Protein Interactions Are Highly Effective in Negative Selection and Regulatory T Cell Induction. J Immunol. 2009; 183(12):7909–18. https://doi.org/10.4049/jimmunol.0902632.
Article
CAS
PubMed
Google Scholar
Atibalentja DF, Murphy KM, Unanue ER. Functional Redundancy between Thymic CD8 α + and Sirp α + Conventional Dendritic Cells in Presentation of Blood-Derived Lysozyme by MHC Class II Proteins. J Immunol. 2011; 186(3):1421–31. https://doi.org/10.4049/jimmunol.1002587.
Article
CAS
PubMed
Google Scholar
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: What thymocytes see (and don’t see). Nat Rev Immunol. 2014; 14(6):377–91. https://doi.org/10.1038/nri3667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity. 2008; 29(3):352–61. https://doi.org/10.1016/j.immuni.2008.09.002.
Article
CAS
PubMed
Google Scholar
Wirnsberger G, Mair F, Klein L. Regulatory T cell differentiation of thymocytes does not require a dedicated antigen-presenting cell but is under T cell-intrinsic developmental control. Proc Natl Acad Sci U S A. 2009; 106(25):10278–83. https://doi.org/10.1073/pnas.0901877106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Park J, Foss D, Goldschneider I. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J Exp Med. 2009; 206(3):607–22. https://doi.org/10.1084/jem.20082232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hadeiba H, Lahl K, Edalati A, Oderup C, Habtezion A, Pachynski R, Nguyen L, Ghodsi A, Adler S, Butcher EC. Plasmacytoid Dendritic Cells Transport Peripheral Antigens to the Thymus to Promote Central Tolerance. Immunity. 2012; 36(3):438–50. https://doi.org/10.1016/j.immuni.2012.01.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proietto AI, Lahoud MH, Wu L. Distinct functional capacities of mouse thymic and splenic dendritic cell populations. Immunol Cell Biol. 2008; 86(8):700–8. https://doi.org/10.1038/icb.2008.63.
Article
CAS
PubMed
Google Scholar
Vollmann EH, Rattay K, Barreiro O, Thiriot A, Fuhlbrigge RA, Vrbanac V, Kim KW, Jung S, Tager AM, von Andrian UH. Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules. Nat Commun. 2021; 12(1):1–19. https://doi.org/10.1038/s41467-021-26446-x.
Article
CAS
Google Scholar
Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, Krohn KJE, Lalioti MD, Mullis PE, Antonarakis SE, Kawasaki K, Asakawa S, Ito F, Shimizu N. Positional cloning of the APECED gene. Nat Genet. 1997; 17(4):393–8. https://doi.org/10.1038/ng1297-393.
Article
CAS
PubMed
Google Scholar
Aaltonen J, Björses P, Perheentupa J, Horelli–Kuitunen N, Palotie A, Peltonen L, Lee YS, Francis F, Henning S, Thiel C, Leharach H, Yaspo M. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet. 1997; 17(4):399–403. https://doi.org/10.1038/ng1297-399.
Article
Google Scholar
Cetani F, Barbesino G, Borsari S, Pardi E, Cianferotti L, Pinchera A, Marcocci C. A Novel Mutation of the Autoimmune Regulator Gene in an Italian Kindred with Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy, Acting in a Dominant Fashion and Strongly Cosegregating with Hypothyroid Autoimmune Thyroiditis. J Clin Endocrinol Metab. 2001; 86(10):4747–52. https://doi.org/10.1210/jcem.86.10.7884.
Article
CAS
PubMed
Google Scholar
Bruserud Ø, Oftedal BE, Wolff AB, Husebye ES. Aire-mutations and autoimmune disease. Curr Opin Immunol. 2016; 43:8–15. https://doi.org/10.1016/j.coi.2016.07.003.
Article
CAS
PubMed
Google Scholar
Ramsey C, Winqvist O, Puhakka L, Halonen M, Moro A, Kämpe O, Eskelin P, Pelto-Huikko M, Peltonen L. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet. 2002; 11(4):397–409. https://doi.org/10.1093/hmg/11.4.397.
Article
CAS
PubMed
Google Scholar
Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D. Projection of an immunological self shadow within the thymus by the aire protein. Science (New York, N.Y.) 2002; 298(5597):1395–401. https://doi.org/10.1126/science.1075958.
Article
CAS
Google Scholar
Passos GA, Speck-Hernandez CA, Assis AF, Mendes-da-Cruz DA. Update on Aire and thymic negative selection. Immunology. 2018; 153(1):10–20. https://doi.org/10.1111/imm.12831.
Article
CAS
PubMed
Google Scholar
Abramson J, Goldfarb Y. AIRE: From promiscuous molecular partnerships to promiscuous gene expression. Eur J Immunol. 2016; 46(1):22–33. https://doi.org/10.1002/eji.201545792.
Article
CAS
PubMed
Google Scholar
Herzig Y, Nevo S, Bornstein C, Brezis MR, Ben-Hur S, Shkedy A, Eisenberg-Bord M, Levi B, Delacher M, Goldfarb Y, David E, Weinberger L, Viukov S, Ben-Dor S, Giraud M, Hanna JH, Breiling A, Lyko F, Amit I, Feuerer M, Abramson J. Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nat Immunol. 2017; 18(2):161–72. https://doi.org/10.1038/ni.3638.
Article
CAS
PubMed
Google Scholar
Bottomley MJ, Collard MW, Huggenvik JI, Liu Z, Gibson TJ, Sattler M. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol. 2001; 8(7):626–33. https://doi.org/10.1038/89675.
Article
CAS
PubMed
Google Scholar
Koh AS, Kuo AJ, Sang YP, Cheung P, Abramson J, Bua D, Carney D, Shoelson SE, Gozani O, Kingston RE, Benoist C, Mathis D. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci U S A. 2008; 105(41):15878–83. https://doi.org/10.1073/pnas.0808470105.
Article
CAS
PubMed
PubMed Central
Google Scholar
žumer K, Low AK, Jiang H, Saksela K, Peterlin BM. Unmodified Histone H3K4 and DNA-Dependent Protein Kinase Recruit Autoimmune Regulator to Target Genes. Mol Cell Biol. 2012; 32(8):1354–62. https://doi.org/10.1128/mcb.06359-11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Halonen M, Kangas H, Rüppell T, Ilmarinen T, Ollila J, Kolmer M, Vihinen M, Palvimo J, Saarela J, Ulmanen I, Eskelin P. APECED-causing mutations in AIRE reveal the functional domains of the protein. Hum Mutat. 2004; 23(3):245–57. https://doi.org/10.1002/humu.20003.
Article
CAS
PubMed
Google Scholar
Ferguson BJ, Alexander C, Rossi SW, Liiv I, Rebane A, Worth CL, Wong J, Laan M, Peterson P, Jenkinson EJ, Anderson G, Scott HS, Cooke A, Rich T. AIRE’s CARD Revealed, a New Structure for Central Tolerance Provokes Transcriptional Plasticity. J Biol Chem. 2008; 283(3):1723–31. https://doi.org/10.1074/jbc.M707211200.
Article
CAS
PubMed
Google Scholar
Org T, Chignola F, Hetényi C, Gaetani M, Rebane A, Liiv I, Maran U, Mollica L, Bottomley MJ, Musco G, Peterson P. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep. 2008; 9(4):370–6. https://doi.org/10.1038/embor.2008.11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Org T, Rebane A, Kisand K, Laan M, Haljasorg U, Andreson R, Peterson P. AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum Mol Genet. 2009; 18(24):4699–710. https://doi.org/10.1093/hmg/ddp433.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterfield M, Khan IS, Cortez JT, Fan U, Metzger T, Greer A, Fasano K, Martinez-Llordella M, Pollack JL, Erle DJ, Su M, Anderson MS. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. Nat Immunol. 2014; 15(3):258–65. https://doi.org/10.1038/ni.2820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res. 2014; 24(12):1918–31. https://doi.org/10.1101/gr.171645.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huoh Y-S, Wu B, Park S, Yang D, Bansal K, Greenwald E, Wong WP, Mathis D, Hur S. Dual functions of Aire CARD multimerization in the transcriptional regulation of T cell tolerance. Nat Commun. 2020; 11(1):1625. https://doi.org/10.1038/s41467-020-15448-w.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oven I, Brdičková N, Kohoutek J, Vaupotič T, Narat M, Peterlin BM. AIRE Recruits P-TEFb for Transcriptional Elongation of Target Genes in Medullary Thymic Epithelial Cells. Mol Cell Biol. 2007; 27(24):8815–23. https://doi.org/10.1128/mcb.01085-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giraud M, Yoshid H, Abramson J, Rahl PB, Young RA, Mathis D, Benoist C. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A. 2012; 109(2):535–40. https://doi.org/10.1073/pnas.1119351109.
Article
CAS
PubMed
Google Scholar
Giraud M, Jmari N, Du L, Carallis F, Nieland TJF, Perez-Campo FM, Bensaude O, Root DE, Hacohen N, Mathis D, Benoist C. An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. Proc Natl Acad Sci U S A. 2014; 111(4):1491–6. https://doi.org/10.1073/pnas.1323535111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida H, Bansal K, Schaefer U, Chapman T, Rioja I, Proekt I, Anderson MS, Prinjha RK, Tarakhovsky A, Benoist C, Mathis D. Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. Proc Natl Acad Sci U S A. 2015; 112(32):4448–57. https://doi.org/10.1073/pnas.1512081112.
Article
CAS
Google Scholar
Liiv I, Rebane A, Org T, Saare M, Maslovskaja J, Kisand K, Juronen E, Valmu L, Bottomley MJ, Kalkkinen N, Peterson P. DNA-PK contributes to the phosphorylation of AIRE: Importance in transcriptional activity. Biochim Biophys Acta Mol Cell Res. 2008; 1783(1):74–83. https://doi.org/10.1016/j.bbamcr.2007.09.003.
Article
CAS
Google Scholar
žumer K, Saksela K, Peterlin BM. The Mechanism of Tissue-Restricted Antigen Gene Expression by AIRE. J Immunol. 2013; 190(6):2479–82. https://doi.org/10.4049/jimmunol.1203210.
Article
PubMed
CAS
Google Scholar
Abramson J, Giraud M, Benoist C, Mathis D. Aire’s Partners in the Molecular Control of Immunological Tolerance. Cell. 2010; 140(1):123–35. https://doi.org/10.1016/j.cell.2009.12.030.
Article
CAS
PubMed
Google Scholar
Bansal K, Yoshida H, Benoist C, Mathis D. The transcriptional regulator Aire binds to and activates super-enhancers. Nat Immunol. 2017; 18(3):263–73. https://doi.org/10.1038/ni.3675.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto S, Michel C, Schmidt-Glenewinkel H, Harder N, Rohr K, Wild S, Brors B, Kyewski B. Overlapping gene coexpression patterns in human medullary thymic epithelial cells generate self-antigen diversity. Proc Natl Acad Sci U S A. 2013; 110(37):3497–505. https://doi.org/10.1073/pnas.1308311110.
Article
Google Scholar
Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res. 2014; 24(12):1918–31. https://doi.org/10.1101/gr.171645.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meredith M, Zemmour D, Mathis D, Benoist C. Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat Immunol. 2015; 16(9):942–9. https://doi.org/10.1038/ni.3247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Küchler R, Huber W, Kyewski B, Steinmetz LM. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol. 2015; 16(9):933–41. https://doi.org/10.1038/ni.3246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koh AS, Miller EL, Buenrostro JD, Moskowitz DM, Wang J, Greenleaf WJ, Chang HY, Crabtree GR. Rapid chromatin repression by Aire provides precise control of immune tolerance article. Nat Immunol. 2018; 19(2):162–72. https://doi.org/10.1038/s41590-017-0032-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson MS, Su MA. AIRE expands: New roles in immune tolerance and beyond. Nat Rev Immunol. 2016; 16(4):247–58. https://doi.org/10.1038/nri.2016.9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perniola R. Twenty Years of AIRE. Front Immunol. 2018;9(FEB). https://doi.org/10.3389/fimmu.2018.00098.
Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell. 2015; 163(4):975–87. https://doi.org/10.1016/j.cell.2015.10.013.
Article
CAS
PubMed
Google Scholar
Tomofuji Y, Takaba H, Suzuki HI, Benlaribi R, Martinez CDP, Abe Y, Morishita Y, Okamura T, Taguchi A, Kodama T, Takayanagi H. Chd4 choreographs self-antigen expression for central immune tolerance. Nat Immunol. 2020; 21(8):892–901. https://doi.org/10.1038/s41590-020-0717-2.
Article
CAS
PubMed
Google Scholar
Takaba H, Takayanagi H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol. 2017; 38(11):805–16. https://doi.org/10.1016/j.it.2017.07.010.
Article
CAS
PubMed
Google Scholar
Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science. 2015; 348(6234):589–94. https://doi.org/10.1126/science.aaa7017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malchow S, Leventhal DS, Lee V, Nishi S, Socci ND, Savage PA. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage. Immunity. 2016; 44(5):1102–13. https://doi.org/10.1016/j.immuni.2016.02.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh CS, Lee HM, Lio CWJ. Selection of regulatory T cells in the thymus. Nat Rev Immunol. 2012; 12(3):157–67. https://doi.org/10.1038/nri3155.
Article
CAS
PubMed
Google Scholar
Lio CWJ, Hsieh CS. A Two-Step Process for Thymic Regulatory T Cell Development. Immunity. 2008; 28(1):100–11. https://doi.org/10.1016/j.immuni.2007.11.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CWJ, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA. Linked T Cell Receptor and Cytokine Signaling Govern the Development of the Regulatory T Cell Repertoire. Immunity. 2008; 28(1):112–21. https://doi.org/10.1016/j.immuni.2007.11.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tai X, Erman B, Alag A, Mu J, Kimura M, Katz G, Guinter T, McCaughtry T, Etzensperger R, Feigenbaum L, Singer DS, Singer A. Foxp3 Transcription Factor Is Proapoptotic and Lethal to Developing Regulatory T Cells unless Counterbalanced by Cytokine Survival Signals. Immunity. 2013; 38(6):1116–28. https://doi.org/10.1016/j.immuni.2013.02.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahmud SA, Manlove LS, Schmitz HM, Xing Y, Wang Y, Owen DL, Schenkel JM, Boomer JS, Green JM, Yagita H, Chi H, Hogquist KA, Farrar MA. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol. 2014; 15(5):473–81. https://doi.org/10.1038/ni.2849.
Article
CAS
PubMed
PubMed Central
Google Scholar
Owen DL, Sjaastad LE, Farrar MA. Regulatory T Cell Development in the Thymus. J Immunol. 2019; 203(8):2031–41. https://doi.org/10.4049/jimmunol.1900662.
Article
CAS
PubMed
Google Scholar
Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking. Blood. 2006; 108(2):426–31. https://doi.org/10.1182/blood-2006-01-0177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muñoz-Rojas AR, Mathis D. Tissue regulatory T cells: regulatory chameleons. Nat Rev Immunol. 2021; 21(9):597–611. https://doi.org/10.1038/s41577-021-00519-w.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D, Benoist C. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR article. Nat Immunol. 2018; 19(3):291–301. https://doi.org/10.1038/s41590-018-0051-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, DiSpirito JR, Zemmour D, Spallanzani RG, Kuswanto W, Benoist C, Mathis D. TCR Transgenic Mice Reveal Stepwise, Multi-site Acquisition of the Distinctive Fat-Treg Phenotype. Cell. 2018; 174(2):285–29912. https://doi.org/10.1016/j.cell.2018.05.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miragaia RJ, Gomes T, Chomka A, Jardine L, Riedel A, Hegazy AN, Whibley N, Tucci A, Chen X, Lindeman I, Emerton G, Krausgruber T, Shields J, Haniffa M, Powrie F, Teichmann SA. Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity. 2019; 50(2):493–5047. https://doi.org/10.1016/j.immuni.2019.01.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delacher M, Imbusch CD, Hotz-Wagenblatt A, Mallm JP, Bauer K, Simon M, Riegel D, Rendeiro AF, Bittner S, Sanderink L, Pant A, Schmidleithner L, Braband KL, Echtenachter B, Fischer A, Giunchiglia V, Hoffmann P, Edinger M, Bock C, Rehli M, Brors B, Schmidl C, Feuerer M. Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF. Immunity. 2020; 52(2):295–31211. https://doi.org/10.1016/j.immuni.2019.12.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4+FOXP3+ T Regulatory Cells. Front Immunol. 2018; 9(JUL):1–10. https://doi.org/10.3389/fimmu.2018.01701.
Google Scholar
Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front Immunol. 2020; 10(January):1–13. https://doi.org/10.3389/fimmu.2019.03100.
Google Scholar
Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, Hogquist KA. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med. 2011; 208(6):1279–89. https://doi.org/10.1084/jem.20110308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vahl JC, Drees C, Heger K, Heink S, Fischer JC, Nedjic J, Ohkura N, Morikawa H, Poeck H, Schallenberg S, Rieß D, Hein MY, Buch T, Polic B, Schönle A, Zeiser R, Schmitt-Gräff A, Kretschmer K, Klein L, Korn T, Sakaguchi S, Schmidt-Supprian M. Continuous T Cell Receptor Signals Maintain a Functional Regulatory T Cell Pool. Immunity. 2014; 41(5):722–36. https://doi.org/10.1016/j.immuni.2014.10.012.
Article
CAS
PubMed
Google Scholar
Levine AG, Arvey A, Jin W, Rudensky AY. Continuous requirement for the TCR in regulatory T cell function. Nat Immunol. 2014; 15(11):1070–8. https://doi.org/10.1038/ni.3004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mocci S, Lafferty K, Howard M. The role of autoantigens in autoimmune disease. Curr Opin Immunol. 2000; 12(6):725–30. https://doi.org/10.1016/S0952-7915(00)00169-2.
Article
CAS
PubMed
Google Scholar
Linnington C, Webb M, Woodhams PL. A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody. J Neuroimmunol. 1984; 6(6):387–96. https://doi.org/10.1016/0165-5728(84)90064-X.
Article
CAS
PubMed
Google Scholar
Bernard CCA, Johns TG, Slavin A, Ichikawa M, Ewing C, Liu J, Bettadapura J. Myelin oligodendrocyte glycoprotein: A novel candidate autoantigen in multiple sclerosis. J Mol Med. 1997; 75(2):77–88. https://doi.org/10.1007/s001090050092.
Article
CAS
PubMed
Google Scholar
De Rosbo NK, Milo R, Lees MB, Burger D, Bernard CCA, Ben-Nun A. Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Investig. 1993; 92(6):2602–8. https://doi.org/10.1172/jci116875.
Article
CAS
Google Scholar
Mendel I, de Rosbo NK, Ben-Nun A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: Fine specificity and T cell receptor V β expression of encephalitogenic T cells. Eur J Immunol. 1995; 25(7):1951–9. https://doi.org/10.1002/eji.1830250723.
Article
CAS
PubMed
Google Scholar
Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol. 2001; 2(11):1032–9. https://doi.org/10.1038/ni723.
Article
CAS
PubMed
Google Scholar
Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary Epithelial Cells of the Human Thymus Express a Highly Diverse Selection of Tissue-specific Genes Colocalized in Chromosomal Clusters. J Exp Med. 2004; 199(2):155–66. https://doi.org/10.1084/jem.20031677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delarasse C, Daubas P, Mars LT, Vizler C, Litzenburger T, Iglesias A, Bauer J, Della Gaspera B, Schubart A, Decker L, Dimitri D, Roussel G, Dierich A, Amor S, Dautigny A, Liblau R, Pham-Dinh D. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice. J Clin Investig. 2003; 112(4):544–53. https://doi.org/10.1172/JCI15861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fazilleau N, Delarasse C, Sweenie CH, Anderton SM, Fillatreau S, Lemonnier FA, Pham-Dinh D, Kanellopoulos JM. Persistence of autoreactive myelin oligodendrocyte glycoprotein (MOG)-specific T cell repertoires in MOG-expressing mice. Eur J Immunol. 2006; 36(3):533–43. https://doi.org/10.1002/eji.200535021.
Article
CAS
PubMed
Google Scholar
Lucca LE, Axisa P, Aloulou M, Perals C, Ramadan A, Rufas P, Kyewski B, Derbinski J, Fazilleau N, Mars LT, Liblau RS. Myelin oligodendrocyte glycoprotein induces incomplete tolerance of CD4 + T cells specific for both a myelin and a neuronal self-antigen in mice. Eur J Immunol. 2016; 46(9):2247–59. https://doi.org/10.1002/eji.201646416.
Article
CAS
PubMed
Google Scholar
Lee T, Sprouse ML, Banerjee P, Bettini M, Bettini ML. Ectopic Expression of Self-Antigen Drives Regulatory T Cell Development and Not Deletion of Autoimmune T Cells. J Immunol. 2017; 199(7):2270–8. https://doi.org/10.4049/jimmunol.1700207.
Article
CAS
PubMed
Google Scholar
Hassler T, Urmann E, Teschner S, Federle C, Dileepan T, Schober K, Jenkins MK, Busch DH, Hinterberger M, Klein L. Inventories of naive and tolerant mouse CD4 T cell repertoires reveal a hierarchy of deleted and diverted T cell receptors. Proc Natl Acad Sci U S A. 2019; 116(37):18537–43. https://doi.org/10.1073/pnas.1907615116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Träger U, Sierro S, Djordjevic G, Bouzo B, Khandwala S, Meloni A, Mortensen M, Simon AK. The immune response to melanoma is limited by thymic selection of self-antigens. PLoS ONE. 2012;7(4). https://doi.org/10.1371/journal.pone.0035005.
Bos R, Van Duikeren S, Van Hall T, Kaaijk P, Taubert R, Kyewski B, Klein L, Melief CJM, Offringa R. Expression of a natural tumor antigen by thymic epithelial cells impairs the tumor-protective CD4+ T-cell repertoire. Cancer Res. 2005; 65(14):6443–9. https://doi.org/10.1158/0008-5472.CAN-05-0666.
Article
CAS
PubMed
Google Scholar
Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP, Amit AS, Kang C, Geddes JE, Allison JP, Socci ND, Savage PA. Aire-Dependent Thymic Development of Tumor-Associated Regulatory T Cells. Science. 2013; 339(6124):1219–24. https://doi.org/10.1126/science.1233913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu M-L, Nagavalli A, Su MA. Aire Deficiency Promotes TRP-1–Specific Immune Rejection of Melanoma. Cancer Res. 2013; 73(7):2104–16. https://doi.org/10.1158/0008-5472.CAN-12-3781.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan IS, Mouchess ML, Zhu ML, Conley B, Fasano KJ, Hou Y, Fong L, Su MA, Anderson MS. Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance. J Exp Med. 2014; 211(5):761–8. https://doi.org/10.1084/jem.20131889.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW. Autoreactive T Cells in Healthy Individuals. J Immunol. 2004; 172(10):5967–72. https://doi.org/10.4049/jimmunol.172.10.5967.
Article
CAS
PubMed
Google Scholar
Padonou F, Gonzalez V, Provin N, Yayilkan S, Jmari N, Maslovskaja J, Kisand K, Peterson P, Irla M, Giraud M. Aire-dependent transcripts escape Raver2-induced splice-event inclusion in the thymic epithelium. EMBO Rep. 2022;1–16. https://doi.org/10.15252/embr.202153576.