Miller JFAP. The function of the thymus and its impact on modern medicine. Science. 2020;369:eaba2429.
Article
CAS
PubMed
Google Scholar
Han J, Zúñiga-Pflücker JC. A 2020 view of thymus stromal cells in T cell development. J Immunol. 2021;206:249–56.
Article
CAS
PubMed
Google Scholar
Petrie HT. Role of thymic organ structure and stromal composition in steady-state postnatal T-cell production. Immunol Rev. 2002;189:8–19.
Article
CAS
PubMed
Google Scholar
Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: an emerging key player in thymic T cell selection. Immunol Rev. 2021;302(1):68–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abramson J, Anderson G. Thymic epithelial cells. Annu Rev Immunol. 2017;35:85–118.
Article
CAS
PubMed
Google Scholar
Kadouri N, Nevo S, Goldfarb Y, Abramson J. Thymic epithelial cell heterogeneity: TEC by TEC. Nat Rev Immunol. 2020;20(4):239–53.
Article
CAS
PubMed
Google Scholar
Nitta T, Takayanagi H. Non-epithelial thymic stromal cells: unsung heroes in thymus organogenesis and T cell development. Front Immunol. 2021;11.
James KD, Jenkinson WE, Anderson G. Non-epithelial stromal cells in thymus development and function. Front Immunol. 2021:12.
Kato S. Thymic microvascular system. Microsc Res Tech. 1997;38(3):287–99.
Article
CAS
PubMed
Google Scholar
Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol. 2006;6(2):127–35.
Article
CAS
PubMed
Google Scholar
Ohigashi I, Kozai M, Takahama Y. Development and developmental potential of cortical thymic epithelial cells. Immunol Rev. 2016;271(1):10–22.
Article
CAS
PubMed
Google Scholar
Takahama Y, Ohigashi I, Baik S, Anderson G. Generation of diversity in thymic epithelial cells. Nat Rev Immunol. 2017;17(5):295–305.
Article
CAS
PubMed
Google Scholar
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol. 2014;14(6):377–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murata S, Sasaki K, Kishimoto T. Niwa S-i, Hayashi H, Takahama Y, Tanaka K: Regulation of CD8+ T cell development by thymus-specific proteasomes. Science. 2007;316(5829):1349–53.
Article
CAS
PubMed
Google Scholar
Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, Ishimaru N, et al. Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity. 2010;32(1):29–40.
Article
CAS
PubMed
Google Scholar
Honey K, Nakagawa T, Peters C, Rudensky A. Cathepsin L regulates CD4(+) T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med. 2002;195(10):1349–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gommeaux J, Gregoire C, Nguessan P, Richelme M, Malissen M, Guerder S, et al. Thymus-specific serine protease regulates positive selection of a subset of CD4(+) thymocytes. Eur J Immunol. 2009;39(4):956–64.
Article
CAS
PubMed
Google Scholar
Murata S, Takahama Y, Kasahara M, Tanaka K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol. 2018;19(9):923–31.
Article
CAS
PubMed
Google Scholar
Sakata M, Ohigashi I, Takahama Y. Cellularity of thymic epithelial cells in the postnatal mouse. J Immunol. 2018;200(4):1382–8.
Article
CAS
PubMed
Google Scholar
Hirakawa M, Nagakubo D, Kanzler B, Avilov S, Krauth B, Happe C, et al. Fundamental parameters of the developing thymic epithelium in the mouse. Sci Rep. 2018;8.
Nakagawa Y, Ohigashi I, Nitta T, Sakata M, Tanaka K, Murata S, et al. Thymic nurse cells provide microenvironment for secondary T cell receptor alpha rearrangement in cortical thymocytes. Proc Natl Acad Sci U S A. 2012;109(50):20572–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol. 2001;2(11):1032–9.
Article
CAS
PubMed
Google Scholar
Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med. 2005;202(1):33–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson MS, Venanzi ES, Klein L, Chen ZB, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395–401.
Article
CAS
PubMed
Google Scholar
Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol. 2003;4(4):350–4.
Article
CAS
PubMed
Google Scholar
Anderson MS, Venanzi ES, Chen ZB, Berzins SP, Benoist C, Mathis D. The cellular mechanism of Aire control of T cell tolerance. Immunity. 2005;23(2):227–39.
Article
CAS
PubMed
Google Scholar
Ueno T, Saito F, Gray DHD, Kuse S, Hieshima K, Nakano H, et al. CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med. 2004;200(4):493–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity. 2006;24(2):165–77.
Article
CAS
PubMed
Google Scholar
Nitta T, Nitta S, Lei Y, Lipp M, Takahama Y. CCR7-mediated migration of developing thymocytes to the medulla is essential for negative selection to tissue-restricted antigens. Proc Natl Acad Sci U S A. 2009;106(40):17129–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozai M, Kubo Y, Katakai T, Kondo H, Kiyonari H, Schaeuble K, et al. Essential role of CCL21 in establishment of central self-tolerance in T cells. J Exp Med. 2017;214(7):1925–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yano M, Kuroda N, Han H, Meguro-Horike M, Nishikawa Y, Kiyonari H, et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med. 2008;205(12):2827–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
White AJ, Nakamura K, Jenkinson WE, Saini M, Sinclair C, Seddon B, et al. Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. J Immunol. 2010;185(8):4769–76.
Article
CAS
PubMed
Google Scholar
Wang JW, Sekai M, Matsui T, Fujii Y, Matsumoto M, Takeuchi O, et al. Hassall’s corpuscles with cellular-senescence features maintain IFN production through neutrophils and pDC activation in the thymus. Int Immunol. 2019;31(3):127–39.
Article
PubMed
CAS
Google Scholar
Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature. 2018;559(7715):622–6.
Article
CAS
PubMed
Google Scholar
Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR, Wang H, et al. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature. 2018;559(7715):627–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucas B, White AJ, Cosway EJ, Parnell SM, James KD, Jones ND, et al. Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. Nat Commun. 2020;11(1).
Mino N, Muro R, Ota A, Nitta S, Lefebvre V, Nitta T, et al. The transcription factor Sox4 is required for thymic tuft cell development. Int Immunol. 2022;34(1):45–52.
Article
CAS
PubMed
Google Scholar
Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development. 2011;138(18):3865–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suniara RK, Jenkinson EJ, Owen JJ. An essential role for thymic mesenchyme in early T cell development. J Exp Med. 2000;191(6):1051–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itoi M, Tsukamoto N, Yoshida H, Amagai T. Mesenchymal cells are required for functional development of thymic epithelial cells. Int Immunol. 2007;19(8):953–64.
Article
CAS
PubMed
Google Scholar
Vaidya HJ, Briones Leon A, Blackburn CC. FOXN1 in thymus organogenesis and development. Eur J Immunol. 2016;46(8):1826–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhalla P, Wysocki CA, van Oers NSC. Molecular insights into the causes of human thymic hypoplasia with animal models. Front Immunol. 2020;11.
Anderson G, Jenkinson EJ, Moore NC, Owen JJT. Mhc class-Ii-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature. 1993;362(6415):70–3.
Article
CAS
PubMed
Google Scholar
Jenkinson WE, Jenkinson EJ, Anderson G. Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J Exp Med. 2003;198(2):325–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson G, Anderson KL, Tchilian EZ, Owen JJT, Jenkinson EJ. Fibroblast dependency during early thymocyte development maps to the CD25(+) CD44(+) stage and involves interactions with fibroblast matrix molecules. Eur J Immunol. 1997;27(5):1200–6.
Article
CAS
PubMed
Google Scholar
Banwell CM, Partington KM, Jenkinson EJ, Anderson G. Studies on the role of IL-7 presentation by mesenchymal fibroblasts during early thymocyte development. Eur J Immunol. 2000;30(8):2125–9.
Article
CAS
PubMed
Google Scholar
Erickson M, Morkowski S, Lehar S, Gillard G, Beers C, Dooley J, et al. Regulation of thymic epithelium by keratinocyte growth factor. Blood. 2002;100(9):3269–78.
Article
CAS
PubMed
Google Scholar
Chu YW, Schmitz S, Choudhury B, Telford W, Kapoor V, Garfield S, et al. Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood. 2008;112(7):2836–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bleul CC, Boehm T. BMP signaling is required for normal thymus development. J Immunol. 2005;175(8):5213–21.
Article
CAS
PubMed
Google Scholar
Gordon J, Patel SR, Mishina Y, Manley NR. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol. 2010;339(1):141–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, et al. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol. 2002;3(11):1102–8.
Article
CAS
PubMed
Google Scholar
Kvell K, Fejes AV, Parnell SM, Pongracz JE. Active Wnt/beta-catenin signaling is required for embryonic thymic epithelial development and functionality ex vivo. Immunobiology. 2014;219(8):644–52.
Article
CAS
PubMed
Google Scholar
Jenkinson WE, Rossi SW, Parnell SM, Jenkinson EJ, Anderson G. PDGFRalpha-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches. Blood. 2007;109(3):954–60.
Article
CAS
PubMed
Google Scholar
Sitnik KM, Kotarsky K, White AJ, Jenkinson WE, Anderson G, Agace WW. Mesenchymal cells regulate retinoic acid receptor-dependent cortical thymic epithelial cell homeostasis. J Immunol. 2012;188(10):4801–9.
Article
CAS
PubMed
Google Scholar
Kernfeld EM, Genga RMJ, Neherin K, Magaletta ME, Xu P, Maehr R. A single-cell transcriptomic atlas of thymus organogenesis resolves cell types and developmental maturation. Immunity. 2018;48(6):1258–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nitta T, Tsutsumi M, Nitta S, Muro R, Suzuki EC, Nakano K, et al. Fibroblasts as a source of self-antigens for central immune tolerance. Nat Immunol. 2020;21(10):1172–80.
Article
PubMed
CAS
Google Scholar
Park JE, Botting RA, Conde CD, Popescu DM, Lavaert M, Kunz DJ, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367(6480):eaay3224.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazbeck R, Jaenisch SE, Abbott CA. Potential disease biomarkers: dipeptidyl peptidase 4 and fibroblast activation protein. Protoplasma. 2018;255(1):375–86.
Article
CAS
PubMed
Google Scholar
desJardins-Park HE, Chinta MS, Foster DS, Borrelli MR, Shen AH, Wan DC, et al. Fibroblast heterogeneity in and its implications for plastic and reconstructive surgery: a basic science review. Prs-Glob Open. 2020;8(6).
Soare A, Györfi HA, Matei AE, Dees C, Rauber S, Wohlfahrt T, et al. Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis Rheum. 2020;72(1):137–49.
Article
CAS
Google Scholar
Borrelli MR, Irizzary D, Patel RA, Nguyen D, Momeni A, Longaker MT, et al. Pro-fibrotic CD26-positive fibroblasts are present in greater abundance in breast capsule tissue of irradiated breasts. Aesthet Surg J. 2020;40(4):369–79.
Article
PubMed
Google Scholar
Kawakubo M, Tanaka M, Ochi K, Watanabe A, Saka-Tanaka M, Kanamori Y, et al. Dipeptidyl peptidase-4 inhibition prevents nonalcoholic steatohepatitis-associated liver fibrosis and tumor development in mice independently of its anti-diabetic effects. Sci Rep. 2020;10(1).
Zuklys S, Gill J, Keller MP, Hauri-Hohl M, Zhanybekova S, Balciunaite G, et al. Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. J Immunol. 2009;182(5):2997–3007.
Article
CAS
PubMed
Google Scholar
Wendland K, Niss K, Kotarsky K, Wu NYH, White AJ, Jendholm J, et al. Retinoic acid signaling in thymic epithelial cells regulates thymopoiesis. J Immunol. 2018;201(2):524–32.
Article
CAS
PubMed
Google Scholar
Choi YI, Duke-Cohan JS, Ahmed WB, Handley MA, Mann F, Epstein JA, et al. PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla. Immunity. 2008;29(6):888–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuertbauer E, Zaujec J, Uhrin P, Raab I, Weber M, Schachner H, et al. Thymic medullar conduits-associated podoplanin promotes natural regulatory T cells. Immunol Lett. 2013;154(1-2):31–41.
Article
CAS
PubMed
Google Scholar
Sitnik KM, Wendland K, Weishaupt H, Uronen-Hansson H, White AJ, Anderson G, et al. Context-dependent development of lymphoid stroma from adult CD34(+) adventitial progenitors. Cell Rep. 2016;14(10):2375–88.
Article
CAS
PubMed
Google Scholar
Foster K, Sheridan J, Veiga-Fernandes H, Roderick K, Pachnis V, Adams R, et al. Contribution of neural crest-derived cells in the embryonic and adult thymus. J Immunol. 2008;180(5):3183–9.
Article
CAS
PubMed
Google Scholar
Muller SM, Stolt CC, Terszowski G, Blum C, Amagai T, Kessaris N, et al. Neural crest origin of perivascular mesenchyme in the adult thymus. J Immunol. 2008;180(8):5344–51.
Article
PubMed
Google Scholar
Jahn L, Kousa AI, Sikkema L, Flores AE, Argyropoulos KV, Tsai J, et al. Dynamic structural cell responses in the thymus to acute injury, regeneration, and age. bioRxiv. https://doi.org/10.1101/2021.12.16.472014.
Yang HW, Youm YH, Dixit VD. Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol. 2009;183(5):3040–52.
Article
CAS
PubMed
Google Scholar
Youm YH, Yang HW, Sun YX, Smith RG, Manley NR, Vandanmagsar B, et al. Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J Biol Chem. 284(11):7068–77.
Boehm T, Scheu S, Pfeffer K, Bleul CC. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med. 2003;198(5):757–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borelli A, Irla M. Lymphotoxin: from the physiology to the regeneration of the thymic function. Cell Death Differ. 2021;28(8):2305–14.
Article
CAS
PubMed
Google Scholar
Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, et al. The cytokine RANKL produced by positively selected thymocytes Fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity. 2008;29(3):438–50.
Article
CAS
PubMed
Google Scholar
Odaka C. Localization of mesenchymal cells in adult mouse thymus: their abnormal distribution in mice with disorganization of thymic medullary epithelium. J Histochem Cytochem. 2009;57(4):373–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871.
Article
CAS
PubMed
PubMed Central
Google Scholar
James KD, Legler DF, Purvanov V, et al. Medullary stromal cells synergize their production and capture of CCL21 for T-cell emigration from neonatal mouse thymus. Blood Adv. 2021;5:99–112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu HP, Chen YT, Chen YY, et al. Heparan sulfate is essential for thymus growth. J Biol Chem. 2021;296:100419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seftalioglu A, Karakoc L. Expression of CD146 adhesion molecules (MUC18 or MCAM) in the thymic microenvironment. Acta Histochem. 2000;102(1):69–83.
Article
CAS
PubMed
Google Scholar
Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.
Article
CAS
PubMed
Google Scholar
Holm A, Heumann T, Augustin HG. Microvascular mural cell organotypic heterogeneity and functional plasticity. Trends Cell Biol. 2018;28(4):302–16.
Article
PubMed
Google Scholar
Zachariah MA, Cyster JG. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science. 2010;328(5982):1129–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
James KD, Cosway EJ, Lucas B, White AJ, Parnell SM, Carvalho-Gaspar M, et al. Endothelial cells act as gatekeepers for LT beta R-dependent thymocyte emigration. J Exp Med. 2018;215(12):2984–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia H, Zhong S, Zhao Y, Ren B, Wang Z, Shi Y, et al. Thymic egress is regulated by T cell-derived LTbetaR signal and via distinct thymic portal endothelial cells. Front Immunol. 2021;12:707404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagatake T, Zhao YC, Ito T, Itoh M, Kometani K, Furuse M, et al. Selective expression of claudin-5 in thymic endothelial cells regulates the blood-thymus barrier and T-cell export. Int Immunol. 2020;33(3):171–82.
Article
PubMed Central
CAS
Google Scholar
Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest. 2018;128(1):26–35.
Article
PubMed
PubMed Central
Google Scholar
Perez-Shibayama C, Gil-Cruz C, Ludewig B. Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunol Rev. 2019;289(1):31–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fletcher AL, Baker AT, Lukacs-Kornek V, Knoblich K. The fibroblastic T cell niche in lymphoid tissues. Curr Opin Immunol. 2020;64:110–6.
Article
CAS
PubMed
Google Scholar
Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC, Lercher A, et al. Structural cells are key regulators of organ-specific immune responses. Nature. 2020;583(7815):296–302.
Article
CAS
PubMed
PubMed Central
Google Scholar