Haughton B, Stang J. Population risk factors and trends in health care and public policy. J Acad Nutr Diet. 2012;112(3):S35–46. https://doi.org/10.1016/j.jand.2011.12.011.
Article
PubMed
Google Scholar
Dall TM, Gallo PD, Chakrabarti R, West T, Semilla AP, Storm MV. An aging population and growing disease burden will require a large and specialized health care workforce by 2025. Health affairs. 2013;32(11):2013–20. https://doi.org/10.1377/hlthaff.2013.0714.
Article
PubMed
Google Scholar
Xia S, Zhang X, Zheng S, Khanabdali R, Kalionis B, Wu J, et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016;2016:1–12. https://doi.org/10.1155/2016/8426874.
Article
CAS
Google Scholar
Josephson AM, Bradaschia-Correa V, Lee S, Leclerc K, Patel KS, Muinos Lopez E, et al. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci. 2019;116(14):6995–7004. https://doi.org/10.1073/pnas.1810692116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gjerde C, Mustafa K, Hellem S, Rojewski M, Gjengedal H, Yassin MA, et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther. 2018;9(1):1–15. https://doi.org/10.1186/s13287-018-0951-9.
Article
Google Scholar
Amini AR et al. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012; 40(5).
Terheyden H, Lang NP, Bierbaum S, Stadlinger B. Osseointegration–communication of cells. Clin Oral Implants Res. 2012;23(10):1127–35. https://doi.org/10.1111/j.1600-0501.2011.02327.x.
Article
PubMed
Google Scholar
Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol. 2020;11:386. https://doi.org/10.3389/fendo.2020.00386.
Article
Google Scholar
Inngjerdingen KT, Patel TR, Chen X, Kenne L, Allen S, Morris GA, et al. Immunological and structural properties of a pectic polymer from Glinus oppositifolius. Glycobiology. 2007;17(12):1299–310. https://doi.org/10.1093/glycob/cwm088.
Article
CAS
PubMed
Google Scholar
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81. https://doi.org/10.1016/S0142-9612(99)00242-2.
Article
CAS
PubMed
Google Scholar
Gurzawska K, Svava R, Jørgensen NR, Gotfredsen K. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans. J Biomed Nanotechnol. 2012;8(6):1012–24. https://doi.org/10.1166/jbn.2012.1457.
Article
CAS
PubMed
Google Scholar
Bussy C, Verhoef R, Haeger A, Morra M, Duval JL, Vigneron P, et al. Modulating in vitro bone cell and macrophage behavior by immobilized enzymatically tailored pectins. J Biomed Mater Res A. 2008;86(3):597–606. https://doi.org/10.1002/jbm.a.31729.
Article
CAS
PubMed
Google Scholar
Morra M, Cassinelli C, Cascardo G, Nagel MD, Della Volpe C, Siboni S, et al. Effects on interfacial properties and cell adhesion of surface modification by pectic hairy regions. Biomacromolecules. 2004;5(6):2094–104. https://doi.org/10.1021/bm049834q.
Article
CAS
PubMed
Google Scholar
Gurzawska K, Svava R, Syberg S, Yihua Y, Haugshøj KB, Damager I, et al. Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response. J Biomed Mater Res A. 2012;100(3):654–64. https://doi.org/10.1002/jbm.a.33311.
Article
CAS
PubMed
Google Scholar
Gurzawska K, Svava R, Yihua Y, Haugshøj KB, Dirscherl K, Levery SB, et al. Osteoblastic response to pectin nanocoating on titanium surfaces. Mater Sci Eng C. 2014;43:117–25. https://doi.org/10.1016/j.msec.2014.06.028.
Article
CAS
Google Scholar
Kokkonen H, Cassinelli C, Verhoef R, Morra M, Schols HA, Tuukkanen J. Differentiation of osteoblasts on pectin-coated titanium. Biomacromolecules. 2008;9(9):2369–76. https://doi.org/10.1021/bm800356b.
Article
CAS
PubMed
Google Scholar
Kokkonen H, Verhoef R, Kauppinen K, Muhonen V, Jørgensen B, Damager I, et al. Affecting osteoblastic responses with in vivo engineered potato pectin fragments. J Biomed Mater Res A. 2012;100(1):111–9. https://doi.org/10.1002/jbm.a.33240.
Article
CAS
PubMed
Google Scholar
Folkert J, Meresta A, Gaber T, Miksch K, Buttgereit F, Detert J, et al. Nanocoating with plant-derived pectins activates osteoblast response in vitro. Int J Nanomedicine. 2017;12:239–49. https://doi.org/10.2147/IJN.S99020.
Article
CAS
PubMed
Google Scholar
Meresta A, Folkert J, Gaber T, Miksch K, Buttgereit F, Detert J, et al. Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection. J Nanomedicine. 2017;12:433–45. https://doi.org/10.2147/IJN.S113740.
Article
CAS
Google Scholar
Popov S, et al. Antiinflammatory activity of the pectic polysaccharide from Comarum palustre. Fitoterapia. 2005;76(3-4):281–7. https://doi.org/10.1016/j.fitote.2005.03.018.
Article
CAS
PubMed
Google Scholar
Popov S, et al. Chemical characterization and anti-inflammatory effect of rauvolfian, a pectic polysaccharide of Rauvolfia callus. Biochem (Mosc). 2007;72(7):778–84. https://doi.org/10.1134/S0006297907070139.
Article
CAS
Google Scholar
Gallet Met al. Inhibition of LPS-induced proinflammatory responses of J774. 2 macrophages by immobilized enzymatically tailored pectins. Acta Biomater. 2009; 5(7):2618-2622.
Furth ME, Atala A, van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials. 2007;28(34):5068–73. https://doi.org/10.1016/j.biomaterials.2007.07.042.
Article
CAS
PubMed
Google Scholar
Nagel M-D, Verhoef R, Schols H, Morra M, Knox JP, Ceccone G, et al. Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle progression and survival of fibroblasts. Biochim Biophys Acta Gen Subj. 2008;1780(7-8):995–1003. https://doi.org/10.1016/j.bbagen.2008.04.002.
Article
CAS
Google Scholar
Dånmark S, Finne-Wistrand A, Albertsson AC, Patarroyo M, Mustafa K. Integrin-mediated adhesion of human mesenchymal stem cells to extracellular matrix proteins adsorbed to polymer surfaces. Biomed Mater. 2012;7(3):035011. https://doi.org/10.1088/1748-6041/7/3/035011.
Article
CAS
PubMed
Google Scholar
Pappalardo D, Mathisen T, Finne-Wistrand A. Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules. 2019;20(4):1465–77. https://doi.org/10.1021/acs.biomac.9b00159.
Article
CAS
PubMed
Google Scholar
Yassin MA, Mustafa K, Xing Z, Sun Y, Fasmer KE, Waag T, et al. A copolymer scaffold functionalized with nanodiamond particles enhances osteogenic metabolic activity and bone regeneration. Macromol Biosci. 2017;17(6):1600427. https://doi.org/10.1002/mabi.201600427.
Article
CAS
Google Scholar
Xing Z, Pedersen TO, Wu X, Xue Y, Sun Y, Finne-Wistrand A, et al. Biological effects of functionalizing copolymer scaffolds with nanodiamond particles. Tissue Eng Part A. 2013;19(15-16):1783–91. https://doi.org/10.1089/ten.tea.2012.0336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yassin MA, Leknes KN, Sun Y, Lie SA, Finne-Wistrand A, Mustafa K. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation. J Biomed Mater Res A. 2016;104(8):2049–59. https://doi.org/10.1002/jbm.a.35741.
Article
CAS
PubMed
Google Scholar
Suliman S, Xing Z, Wu X, Xue Y, Pedersen TO, Sun Y, et al. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J Control Release. 2015;197:148–57. https://doi.org/10.1016/j.jconrel.2014.11.003.
Article
CAS
PubMed
Google Scholar
Suliman S, Mustafa K, Krueger A, Steinmüller-Nethl D, Finne-Wistrand A, Osdal T, et al. Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes. Biomaterials. 2016;95:11–21. https://doi.org/10.1016/j.biomaterials.2016.04.002.
Article
CAS
PubMed
Google Scholar
Suliman S, Sun Y, Pedersen TO, Xue Y, Nickel J, Waag T, et al. In vivo host response and degradation of copolymer scaffolds functionalized with nanodiamonds and bone morphogenetic protein 2. Adv Healthc Mater. 2016;5(6):730–42. https://doi.org/10.1002/adhm.201500723.
Article
CAS
PubMed
Google Scholar
Munir A et al. Efficacy of copolymer scaffolds delivering human demineralised dentine matrix for bone regeneration. J Tissue Eng .2019; 10:2041731419852703.
Svava R, Gurzawska K, Yihau Y, Haugshøj KB, Dirscherl K, Levery SB, et al. The structurally effect of surface coated rhamnogalacturonan I on response of the osteoblast-like cell line SaOS-2. J Biomed Mater Res A. 2014;102(6):1961–71. https://doi.org/10.1002/jbm.a.34868.
Article
CAS
PubMed
Google Scholar
Matthews J, et al. Neutrophil hyper-responsiveness in periodontitis. J Dent Res. 2007;86(8):718–22. https://doi.org/10.1177/154405910708600806.
Article
CAS
PubMed
Google Scholar
Sotoodehnejadnematalahi F, Staples KJ, Chrysanthou E, Pearson H, Ziegler-Heitbrock L, Burke B. Mechanisms of hypoxic up-regulation of versican gene expression in macrophages. PLoS One. 2015;10(6):e0125799. https://doi.org/10.1371/journal.pone.0125799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Mieszkowska A, Folkert J, Gaber T, Miksch K, Gurzawska K. Pectin nanocoating reduces proinflammatory fibroblast response to bacteria. J Biomed Mater Res A. 2017;105(12):3475–81. https://doi.org/10.1002/jbm.a.36170.
Article
CAS
PubMed
Google Scholar
Prado SB, et al. Pectin interaction with immune receptors is modulated by ripening process in papayas. Sci Rep. 2020;10(1):1–11. https://doi.org/10.1038/s41598-020-58311-0.
Article
CAS
Google Scholar
Ishisono K, Yabe T, Kitaguchi K. Citrus pectin attenuates endotoxin shock via suppression of Toll-like receptor signaling in Peyer’s patch myeloid cells. J Nutr Biochem. 2017;50:38–45. https://doi.org/10.1016/j.jnutbio.2017.07.016.
Article
CAS
PubMed
Google Scholar
Gao X, Zhi Y, Sun L, Peng X, Zhang T, Xue H, et al. The inhibitory effects of a rhamnogalacturonan Ι (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship. J. Biol. Chem. 2013;288(47):33953–65. https://doi.org/10.1074/jbc.M113.482315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Duckworth CA, Zhao Q, Pritchard DM, Rhodes JM, Yu LG. Increased circulation of galectin-3 in cancer induces secretion of metastasis-promoting cytokines from blood vascular endothelium. Clin. Cancer Res. 2013;19(7):1693–704. https://doi.org/10.1158/1078-0432.CCR-12-2940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Díaz-Alvarez L, Ortega E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm. 2017;2017:1–10. https://doi.org/10.1155/2017/9247574.
Article
CAS
Google Scholar
Miller MC, Zheng Y, Zhou Y, Tai G, Mayo KH. Galectin-3 binds selectively to the terminal, non-reducing end of β (1→ 4)-galactans, with overall affinity increasing with chain length. Glycobiology. 2019;29(1):74–84. https://doi.org/10.1093/glycob/cwy085.
Article
CAS
PubMed
Google Scholar
Liu Y, Yu S, Chai Y, Zhang Q, Yang H, Zhu Q. Lipopolysaccharide-induced gene expression of interleukin-1 receptor-associated kinase 4 and interleukin-1β in roughskin sculpin (Trachidermus fasciatus). Fish Shellfish Immunol. 2012;33(4):690–8. https://doi.org/10.1016/j.fsi.2012.05.035.
Article
CAS
PubMed
Google Scholar
Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, et al. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep. 2015;10(9):1626–38. https://doi.org/10.1016/j.celrep.2015.02.012.
Article
CAS
PubMed
Google Scholar
Fermino ML, Polli CD, Toledo KA, Liu FT, Hsu DK, Roque-Barreira MC, et al. LPS-induced galectin-3 oligomerization results in enhancement of neutrophil activation. PloS one. 2011;6(10):e26004. https://doi.org/10.1371/journal.pone.0026004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuwabara I, et al. Galectin-3 promotes adhesion of human neutrophils to laminin. J. Immunol. 1996;156(10):3939–44.
CAS
PubMed
Google Scholar
Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J. Immunol. 2000;165(4):2156–64. https://doi.org/10.4049/jimmunol.165.4.2156.
Article
CAS
PubMed
Google Scholar
Filer A, Bik M, Parsonage GN, Fitton J, Trebilcock E, Howlett K, et al. Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 2009;60(6):1604–14. https://doi.org/10.1002/art.24574.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matter CM, Handschin C. RANTES (regulated on activation, normal T cell expressed and secreted), inflammation, obesity, and the metabolic syndrome. Circulation. 2007;115(8):946–8. https://doi.org/10.1161/CIRCULATIONAHA.106.685230.
Article
PubMed
Google Scholar
de Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA. Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25(10):2357–69. https://doi.org/10.1007/s11095-008-9617-0.
Article
CAS
PubMed
Google Scholar
Morra M. Biochemical modification of titanium surfaces: peptides and ECM proteins. Eur Cell Mater. 2006;12(1):15. https://doi.org/10.22203/eCM.v012a01.
Article
Google Scholar
Munarin F, Guerreiro SG, Grellier MA, Tanzi MC, Barbosa MA, Petrini P, et al. Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules. 2011;12(3):568–77. https://doi.org/10.1021/bm101110x.
Article
CAS
PubMed
Google Scholar
Liang WG, Triandafillou CG, Huang TY, Zulueta MML, Banerjee S, Dinner AR, et al. Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. Proc Natl Acad Sci. 2016;113(18):5000–5. https://doi.org/10.1073/pnas.1523981113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhattacharya P, Thiruppathi M, Elshabrawy HA, Alharshawi K, Kumar P, Prabhakar BS. GM-CSF: an immune modulatory cytokine that can suppress autoimmunity. Cytokine. 2015;75(2):261–71. https://doi.org/10.1016/j.cyto.2015.05.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slavov E, Miteva L, Prakova G, Gidikova P, Stanilova S. Correlation between TNF-alpha and IL-12p40-containing cytokines in silicosis. Toxicol Ind Health. 2010;26(8):479–86. https://doi.org/10.1177/0748233710373082.
Article
CAS
PubMed
Google Scholar
Lisignoli G, Piacentini A, Cristino S, Grassi F, Cavallo C, Cattini L, et al. CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol. 2007;210(3):798–806. https://doi.org/10.1002/jcp.20905.
Article
CAS
PubMed
Google Scholar
Jones K. Fibrotic response to biomaterials and all associated sequence of fibrosis. In: Host response to biomaterials. Elsevier; 2015: 189-237, Fibrotic Response to Biomaterials and all Associated Sequence of Fibrosis.
O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14(3):88–95. https://doi.org/10.1016/S1369-7021(11)70058-X.
Article
CAS
Google Scholar
Dånmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, et al. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater. 2011;7(5):2035–46. https://doi.org/10.1016/j.actbio.2011.02.011.
Article
CAS
PubMed
Google Scholar
Gurzawska K, Dirscherl K, Yihua Y, Byg I, Jørgensen B, Svava R, et al. Characterization of pectin nanocoatings at polystyrene and titanium surfaces. JSEMAT. 2013;3(04):20–8. https://doi.org/10.4236/jsemat.2013.34A1003.
Article
CAS
Google Scholar
Karageorgiou V, et al. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91. https://doi.org/10.1016/j.biomaterials.2005.02.002.
Article
CAS
PubMed
Google Scholar
Dånmark S, Finne-Wistrand A, Wendel M, Arvidson K, Albertsson AC, Mustafa K. Osteogenic differentiation by rat bone marrow stromal cells on customized biodegradable polymer scaffolds. J Bioact Compat Polym. 2010;25(2):207–23. https://doi.org/10.1177/0883911509358812.
Article
CAS
Google Scholar
Odelius K, Plikk P, Albertsson AC Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether−ester. Biomacromolecules; 2005: 6(5):2718-2725, DOI: https://doi.org/10.1021/bm050190b.
Sharma S, Sapkota D, Xue Y, Rajthala S, Yassin MA, Finne-Wistrand A, et al. Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model. Stem Cell Res. Ther. 2018;9(1):1–13. https://doi.org/10.1186/s13287-018-0778-4.
Article
CAS
Google Scholar
Xue Y, Dånmark S, Xing Z, Arvidson K, Albertsson AC, Hellem S, et al. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study. J Biomed Mater Res A. 2010;95(4):1244–51. https://doi.org/10.1002/jbm.a.32945.
Article
CAS
PubMed
Google Scholar
Rolvien T et al. Cellular mechanisms responsible for success and failure of bone substitute materials. Int. J. Mol. Sci.; 2018: 19(10):2893.