Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, et al. Animal models of multiple sclerosis: from rodents to zebrafish. Mult Scler. 2019;25:306–24. https://doi.org/10.1177/1352458518805246.
Article
PubMed
Google Scholar
Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, Pirko I. The relevance of animal models in multiple sclerosis research. Pathophysiology. 2011;18:21–9. https://doi.org/10.1016/j.pathophys.2010.04.004.
Article
CAS
PubMed
Google Scholar
Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017;133:223–44. https://doi.org/10.1007/s00401-016-1631-4.
Article
CAS
PubMed
Google Scholar
Duncan ID, Radcliff AB, Heidari M, Kidd G, August BK, Wierenga LA. The adult oligodendrocyte can participate in remyelination. Proc Natl Acad Sci U S A. 2018;115:E11807–16. https://doi.org/10.1073/pnas.1808064115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Widenfalk J, Lundströmer K, Jubran M, Brene S, Olson L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci. 2001;21:3457–75. https://doi.org/10.1523/JNEUROSCI.21-10-03457.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
David S, Lacroix S. Molecular approaches to spinal cord repair. Annu Rev Neurosci. 2003;26:411–40. https://doi.org/10.1146/annurev.neuro.26.043002.094946.
Article
CAS
PubMed
Google Scholar
Salarinia R, Sadeghnia HR, Alamdari DH, Hoseini SJ, Mafinezhad A, Hosseini M. Platelet rich plasma: effective treatment for repairing of spinal cord injury in rat. Acta Orthop Traumatol Turc. 2017;51:254–7. https://doi.org/10.1016/j.aott.2017.02.009.
Article
PubMed
PubMed Central
Google Scholar
Abdallah AN, Shamaa AA, El-Tookhy OS. Evaluation of treatment of experimentally induced canine model of multiple sclerosis using laser activated non-expanded adipose derived stem cells. Res Vet Sci. 2019;125:71–81. https://doi.org/10.1016/j.rvsc.2019.05.016.
Article
CAS
PubMed
Google Scholar
Pachner AR. Experimental models of multiple sclerosis. Curr Opin Neurol. 2011;24:291–9. https://doi.org/10.1097/WCO.0b013e328346c226.
Article
PubMed
Google Scholar
Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci. 2012;15:1074–7. https://doi.org/10.1038/nn.3168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farid MF, Abouelela YS, Rizk H. Stem cell treatment trials of spinal cord injuries in animals. Auton Neurosci. 2021;238:102932. https://doi.org/10.1016/j.autneu.2021.102932.
Article
CAS
PubMed
Google Scholar
Eminaga S, Palus V, Cherubini GB. Acute spinal cord injury in the cat: causes, treatment and prognosis. J Feline Med Surg. 2011;13:850–62. https://doi.org/10.1016/j.jfms.2011.09.006.
Article
PubMed
Google Scholar
Abdallah AN, Shamaa AA, El-Tookhy O. Ethidium bromide induced demyelination of the central nervous system in a dog model of secondary progressive multiple sclerosis. J Curr Vet Res. 2020;2:57–67. https://doi.org/10.21608/jcvr.2020.90224.
Article
Google Scholar
Xu J, Gou L, Zhang P, Li H, Qiu S. Platelet-rich plasma and regenerative dentistry. Aust Dent J. 2020;65:131–42. https://doi.org/10.1111/adj.12754.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho HH, Jang S, Lee SC, Jeong HS, Park JS, Han JY, et al. Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model. Laryngoscope. 2010;120:907–13. https://doi.org/10.1002/lary.20860.
Article
CAS
PubMed
Google Scholar
Choi J, Minn KW, Chang H. The efficacy and safety of platelet-rich plasma and adipose-derived stem cells: an update. Arch Plast Surg. 2012;39:585–92. https://doi.org/10.5999/aps.2012.39.6.585.
Article
PubMed
PubMed Central
Google Scholar
Lian Z, Yin X, Li H, Jia L, He X, Yan Y, et al. Synergistic effect of bone marrow-derived mesenchymal stem cells and platelet-rich plasma in streptozotocin-induced diabetic rats. Ann Dermatol. 2014;26:1–10. https://doi.org/10.5021/ad.2014.26.1.1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gazia M. Histological study on the possible ameliorating effect of platelet rich plasma on ischemia/reperfusion injury in testicular torsion model in adult albino rat. Egypt J Histol. 2020;43:614–29. https://doi.org/10.21608/ejh.2019.9860.1091.
Article
Google Scholar
Hammond JW, Hinton RY, Curl LA, Muriel JM, Lovering RM. Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med. 2009;37:1135–42. https://doi.org/10.1177/0363546508330974.
Article
PubMed
PubMed Central
Google Scholar
Smith SE, Roukis TS. Bone and wound healing augmentation with platelet-rich plasma. Clin Podiatr Med Surg. 2009;26:559–88. https://doi.org/10.1016/j.cpm.2009.07.002.
Article
PubMed
Google Scholar
Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop. 2010;34:589–97. https://doi.org/10.1007/s00264-009-0793-2.
Article
CAS
PubMed
Google Scholar
Lyras DN, Kazakos K, Agrogiannis G, Verettas D, Kokka A, Kiziridis G, et al. Experimental study of tendon healing early phase: is IGF-1 expression influenced by platelet rich plasma gel? Orthop Traumatol Surg Res. 2010;96:381–7. https://doi.org/10.1016/j.otsr.2010.03.010.
Article
CAS
PubMed
Google Scholar
Marycz K, Grzesiak J, Wrzeszcz K, Golonka P. Adipose stem cell combined with plasma-based implant bone tissue differentiation in vitro and in a horse with a phalanx digitalis distalis fracture: a case report. Vet Med. 2012;11:610–7.
Article
Google Scholar
Guner S, Buyukbebeci O. Analyzing the effects of platelet gel on knee osteoarthritis in the rat model. Clin Appl Thromb Hemost. 2013;19:494–8. https://doi.org/10.1177/1076029612452117.
Article
CAS
PubMed
Google Scholar
Kwon DR, Park GY, Lee SU. The effects of intra-articular platelet-rich plasma injection according to the severity of collagenase-induced knee osteoarthritis in a rabbit model. Ann Rehabil Med. 2012;36:458–65. https://doi.org/10.5535/arm.2012.36.4.458.
Article
PubMed
PubMed Central
Google Scholar
Mifune Y, Matsumoto T, Takayama K, Ota S, Li H, Meszaros LB, et al. The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthr Cartil. 2013;21:175–85. https://doi.org/10.1016/j.joca.2012.09.018.
Article
CAS
Google Scholar
Hayon Y, Dashevsky O, Shai E, Varon D, Leker RR. Platelet lysates stimulate angiogenesis, neurogenesis and neuroprotection after stroke. Thromb Haemost. 2013;110:323–30. https://doi.org/10.1160/TH12-11-0875.
Article
CAS
PubMed
Google Scholar
Chen NF, Sung CS, Wen ZH, Chen CH, Feng CW, Hung HC, et al. Therapeutic effect of platelet-rich plasma in rat spinal cord injuries. Front Neurosci. 2018;12:252. https://doi.org/10.3389/fnins.2018.00252.
Article
PubMed
PubMed Central
Google Scholar
Unal M. Platelet-rich plasma in burn treatment. In S. P. Kartal, & D. Bayramgürler (Eds.), Hot Topics in Burn Injuries. IntechOpen. 2017. https://doi.org/10.5772/intechopen.70835.
Riet-Correa G, Fernandes CG, Pereira LAV, Graça DL. Ethidium bromide-induced demyelination of the sciatic nerve of adult Wistar rats. Braz J Med Biol Res. 2002;35:99–104.
Article
CAS
Google Scholar
Goudarzvand M, Choopani S, Shams A, Javan M, Khodaii Z, Ghamsari F, et al. Focal injection of ethidium bromide as a simple model to study cognitive deficit and its improvement. Basic Clin Neurosci. 2016;7:63–72.
CAS
PubMed
PubMed Central
Google Scholar
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. Neurologia (Engl Ed). 2020;35:32–9. https://doi.org/10.1016/j.nrleng.2019.03.007.
Article
CAS
Google Scholar
Blakemore WF. Ethidium bromide induced demyelination in the spinal cord of the cat. Neuropathol Appl Neurobiol. 1982;8:365–75. https://doi.org/10.1111/j.1365-2990.1982.tb00305.x.
Article
CAS
PubMed
Google Scholar
Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21. https://doi.org/10.1006/exnr.1996.0098.
Article
CAS
PubMed
Google Scholar
Giraldo CE, Álvarez ME, Carmona JU. Effects of sodium citrate and acid citrate dextrose solutions on cell counts and growth factor release from equine pure-platelet rich plasma and pure-platelet rich gel. BMC Vet Res. 2015;1:1–7. https://doi.org/10.1186/s12917-015-0370-4.
Article
CAS
Google Scholar
Cavallo C, Roffi A, Grigolo B, Mariani E, Pratelli L, Merli G, et al. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed Res Int. 2016;2016:6591717. https://doi.org/10.1155/2016/6591717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Priglinger E, Maier J, Chaudary S, Lindner C, Wurzer C, Rieger S, et al. Photobiomodulation of freshly isolated human adipose tissue-derived stromal vascular fraction cells by pulsed light-emitting diodes for direct clinical application. J Tissue Eng Regen Med. 2018;12:1352–62. https://doi.org/10.1002/term.2665.
Article
CAS
PubMed
Google Scholar
Vassallo S. Thiopental in lethal injection. Fordham Urb LJ. 2008;35:957–86.
Google Scholar
Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. 6th Edition. China: Churchill Livingstone, Elsevier; 2008.
Google Scholar
Rizk H, Tohamy AF, Sayed WM, Prince A. Ameliorative effects of bone marrow derived pancreatic progenitor cells on hyperglycemia and oxidative stress in diabetic rats. Acta Histochem. 2018;120:412–9. https://doi.org/10.1016/j.acthis.2018.05.001.
Article
PubMed
Google Scholar
Hassan N, Mostafa I, Elhady MA, Ibrahim MA, Amer H. Effects of probiotic feed additives (Biosol and Zemos) on growth and related genes in broiler chickens. Ital J Anim Sci. 2022;21:62–73. https://doi.org/10.1080/1828051X.2021.2016509.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Piskin A, Kaplan S, Aktas A, Ayyildiz M, Raimondo S, Alic T, et al. Platelet gel does not improve peripheral nerve regeneration: an electrophysiological, stereological, and electron microscopic study. Microsurgery. 2009;29:144–53. https://doi.org/10.1002/micr.20599.
Article
PubMed
Google Scholar
Morishita M, Ishida K, Matsumoto T, Kuroda R, Kurosaka M, Tsumura N. Intraoperative platelet-rich plasma does not improve outcomes of total knee arthroplasty. J Arthroplast. 2014;29:2337–41. https://doi.org/10.1016/j.arth.2014.04.007.
Article
Google Scholar
Borhani-Haghighi M, Mohamadi Y. The therapeutic effect of platelet-rich plasma on the experimental autoimmune encephalomyelitis mice. J Neuroimmunol. 2019;333:476958. https://doi.org/10.1016/j.jneuroim.2019.04.018.
Article
CAS
PubMed
Google Scholar
Armstrong RC. Growth factor regulation of remyelination: behind the growing interest in endogenous cell repair of the CNS. Future Neurol. 2007;2:689–97. https://doi.org/10.2217/14796708.2.6.689.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuypers NJ, James KT, Enzmann GU, Magnuson DSK, Whittemore SR. Functional consequences of ethidium bromide demyelination of the mouse ventral spinal cord. Exp Neurol. 2013;247:615–22. https://doi.org/10.1016/j.expneurol.2013.02.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollis E, Ishiko N, Tolentino K, Doherty E, Rodriguez M, Calcutt N, et al. A novel and robust conditioning lesion induced by ethidium bromide. Exp.neurol. 2015;265(30-9). https://doi.org/10.1016/j.expneurol.2014.12.004.
Loy DN, Magnuson DSK, Zhang YP, Onifer SM, Mills MD, Cao QL, et al. Functional redundancy of ventral spinal locomotor pathways. J Neurosci. 2002;22:315–23. https://doi.org/10.1523/JNEUROSCI.22-01-00315.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung DI, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, et al. A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci. 2009;285:67–77. https://doi.org/10.1016/j.jns.2009.05.027.
Article
PubMed
Google Scholar
Wu B, Ren XJ. Control of demyelination for recovery of spinal cord injury. Chin J Traumatol. 2008;11:306–10. https://doi.org/10.5555/cjt.1008-1275.11.05.p306.01.
Article
PubMed
Google Scholar
Nishio Y, Koda M, Kitajo K, Seto M, Hata K, Taniguchi J, et al. Delayed treatment with Rho-kinase inhibitor does not enhance axonal regeneration or functional recovery after spinal cord injury in rats. Exp Neurol. 2006;2:392–7. https://doi.org/10.1016/j.expneurol.2006.02.123.
Article
CAS
Google Scholar
Sarmento CA, Rodrigues MN, Bocabello RZ, Mess AM, Miglino MA. Pilot study: bone marrow stem cells as a treatment for dogs with chronic spinal cord injury. Regen Med Res. 2014;2:9.
Article
Google Scholar
Lassmann H, Wolfgang B, Lucchinetti C, Rodriguez M. Remyelination multiple sclerosis. Mult Scler. 1997;3:133–6.
Article
CAS
Google Scholar
Kuhlmann T, Lassmann H, Brück W. Diagnosis of inflammatory demyelination in biopsy specimens: a practical approach. Acta Neuropathol. 2008;115:275–87. https://doi.org/10.1007/s00401-007-0320-8.
Article
PubMed
PubMed Central
Google Scholar
Popescu BF, Lucchinetti CF. Neuropathology of multiple sclerosis. Mult Scler. 2016:181–200. https://doi.org/10.1016/B978-0-12-800763-1.00009-9.
Jeong SY, Crooks DR, Wilson-Ollivierre H, Ghosh MC, Sougrat R, Lee J, et al. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice. PLoS One. 2011;6:e25404.
Article
CAS
Google Scholar
Carvalho KS. Mitochondrial dysfunction in demyelinating diseases. Semin Pediatr Neurol. 2013;20:194–201.
Article
Google Scholar
Rozenblum GT, Kaufman T, Vitullo AD. Myelin basic protein and a multiple sclerosis-related MBP-peptide bind to oligonucleotides. Mol Ther Nucleic Acids. 2014;3:e192. https://doi.org/10.1038/mtna.2014.43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valdivia AO, Agarwal PK, Bhattacharya SK. Myelin basic protein phospholipid complexation likely competes with deimination in experimental autoimmune encephalomyelitis mouse model. ACS Omega. 2020;5:15454–67. https://doi.org/10.1021/acsomega.0c01590.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deboux C, Bachelin C, Frah ÃM, Kerninon C, Seilhean D, Weider M, et al. Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain. 2015;138:120–35. https://doi.org/10.1093/brain/awu375.
Article
PubMed
Google Scholar
Axelsson M, Malmeström C, Nilsson S, Haghighi S, Rosengren L, Lycke J. Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol. 2011;258:882–8. https://doi.org/10.1007/s00415-010-5863-2.
Article
CAS
PubMed
Google Scholar
Kassubek R, Gorges M, Schocke M, Hagenston VAM, Huss A, Ludolph AC, et al. GFAP in early multiple sclerosis: a biomarker for inflammation. Neurosci Lett. 2017;657:166–70.
Article
CAS
Google Scholar
Abdelhak A, Huss A, Kassubek J, Tumani H, Otto M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci Rep. 2018;8:14798. https://doi.org/10.1038/s41598-018-33158-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Karim S, Ramadan WS, Abdel-Hamid GA, Al-Qudsi F. Does neuroectodermal stem cells transplantation restore neural regeneration and locomotor functions in compressed spinal cord injury rat model? Int J Morphol. 2019;37:349–57.
Article
Google Scholar
Rajendran R, Giraldo-Velásquez M, Stadelmann C, Berghoff M. Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through ERK/AKT phosphorylation. Brain Pathol. 2018;28:212–24. https://doi.org/10.1111/bpa.12487.
Article
CAS
PubMed
Google Scholar
Lev N, Barhum Y, Melamed E, Offen D. Bax-ablation attenuates experimental autoimmune encephalomyelitis in mice. Neurosci Lett. 2004;15:139–42.
Article
Google Scholar
Salarinia R, Hosseini M, Mohamadi Y, Ghorbani A, Alamdari DH, Mafinezhad A, et al. Combined use of platelet-rich plasma and adipose tissue-derived mesenchymal stem cells shows a synergistic effect in experimental spinal cord injury. J Chem Neuroanat. 2020;110:101870. https://doi.org/10.1016/j.jchemneu.2020.101870.
Article
CAS
PubMed
Google Scholar
Hu Y, Russek SJ. BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J Neurochem. 2008;105:1–17. https://doi.org/10.1016/j.jchemneu.2020.101870.
Article
CAS
PubMed
Google Scholar
Yang S, Wang C, Zhu J, Lu C, Li H, Chen F, et al. Self-assembling peptide hydrogels functionalized with LN-and BDNF-mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics. 2020;10:8227–49. https://doi.org/10.7150/thno.44276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizoguchi Y, Monji A, Kato T, Seki Y, Gotoh L, Horikawa H, et al. Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca2+ in rodent microglia. J Immunol. 2009;183:7778–86. https://doi.org/10.4049/jimmunol.0901326.
Article
CAS
PubMed
Google Scholar
Lee DH, Geyer E, Flach AC, Jung K, Gold R, Flügel A, et al. Central nervous system rather than immune cell derived BDNF mediates axonal protective effects early in autoimmune demyelination. Acta Neuropathol. 2012;123:247–58. https://doi.org/10.1007/s00401-011-0890-3.
Article
CAS
PubMed
Google Scholar
Asami T, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S. Autocrine activation of cultured macrophages by brain-derived neurotrophic factor. Biochem Biophys Res Commun. 2006;344:941–7. https://doi.org/10.1016/j.bbrc.2006.03.228.
Article
CAS
PubMed
Google Scholar
Zhao T, Yan W, Xu K, Qi Y, Dai X, Shi Z. Combined treatment with platelet-rich plasma and brain-derived neurotrophic factor-overexpressing bone marrow stromal cells supports axonal remyelination in a rat spinal cord hemi-section model. Cytotherapy. 2013;15:792–804. https://doi.org/10.1016/j.jcyt.2013.04.004.
Article
CAS
PubMed
Google Scholar
Shiri E, Pasbakhsh P, Borhani-Haghighi M, Alizadeh Z, Nekoonam S, Mojaverrostami S, et al. Mesenchymal stem cells ameliorate cuprizone-induced demyelination by targeting oxidative stress and mitochondrial dysfunction. Cell Mol Neurobiol. 2021;41:1467–81. https://doi.org/10.1007/s10571-020-00910-6.
Article
CAS
PubMed
Google Scholar
Salcedo R, Oppenheim JJ. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation. 2003;10:359–70. https://doi.org/10.1038/sj.mn.7800200.
Article
CAS
PubMed
Google Scholar
Ren K, Dubner R. Activity-triggered tetrapartite neuron–glial interactions following peripheral injury. Curr Opin Pharmacol. 2016;26:16–25. https://doi.org/10.1016/j.coph.2015.09.006.
Article
CAS
PubMed
Google Scholar