Gotoda T, Kondo H, Ono H, Saito Y, Yamaguchi H, Saito D, et al. A new endoscopic mucosal resection procedure using an insulation-tipped electrosurgical knife for rectal flat lesions: report of two cases. Gastrointest Endosc. 1999;50(4):560–3. https://doi.org/10.1016/S0016-5107(99)70084-2.
Article
CAS
PubMed
Google Scholar
Moore JS, Aulet TH. Colorectal Cancer Screening. Surg Clin North Am. 2017;97(3):487–502. https://doi.org/10.1016/j.suc.2017.01.001.
Article
PubMed
Google Scholar
Pasechnikov V, Chukov S, Fedorov E, Kikuste I, Leja M. Gastric cancer: prevention, screening and early diagnosis. World J Gastroenterol. 2014;20(38):13842–62. https://doi.org/10.3748/wjg.v20.i38.13842.
Article
PubMed
PubMed Central
Google Scholar
di Pietro M, Canto MI, Fitzgerald RC. Endoscopic management of early adenocarcinoma and squamous cell carcinoma of the esophagus: screening, diagnosis, and therapy. Gastroenterology. 2018;154(2):421–36. https://doi.org/10.1053/j.gastro.2017.07.041.
Article
PubMed
Google Scholar
Kato M, Nishida T, Yamamoto K, Hayashi S, Kitamura S, Yabuta T, et al. Scheduled endoscopic surveillance controls secondary cancer after curative endoscopic resection for early gastric cancer: a multicentre retrospective cohort study by Osaka University ESD study group. Gut. 2013;62(10):1425–32. https://doi.org/10.1136/gutjnl-2011-301647.
Article
PubMed
Google Scholar
Nishizawa T, Yahagi N. Endoscopic mucosal resection and endoscopic submucosal dissection: technique and new directions. Curr Opin Gastroenterol. 2017;33(5):315–9. https://doi.org/10.1097/MOG.0000000000000388.
Article
PubMed
Google Scholar
Tsujii Y, Nishida T, Nishiyama O, Yamamoto K, Kawai N, Yamaguchi S, et al. Clinical outcomes of endoscopic submucosal dissection for superficial esophageal neoplasms: a multicenter retrospective cohort study. Endoscopy. 2015;47(9):775–83.
Article
Google Scholar
Katada C, Muto M, Manabe T, Boku N, Ohtsu A, Yoshida S. Esophageal stenosis after endoscopic mucosal resection of superficial esophageal lesions. Gastrointest Endosc. 2003;57(2):165–9. https://doi.org/10.1067/mge.2003.73.
Article
PubMed
Google Scholar
Ono S, Fujishiro M, Niimi K, Goto O, Kodashima S, Yamamichi N, et al. Predictors of postoperative stricture after esophageal endoscopic submucosal dissection for superficial squamous cell neoplasms. Endoscopy. 2009;41(8):661–5. https://doi.org/10.1055/s-0029-1214867.
Article
CAS
PubMed
Google Scholar
Mizuta H, Nishimori I, Kuratani Y, Higashidani Y, Kohsaki T, Onishi S. Predictive factors for esophageal stenosis after endoscopic submucosal dissection for superficial esophageal cancer. Dis Esophagus. 2009;22(7):626–31. https://doi.org/10.1111/j.1442-2050.2009.00954.x.
Article
CAS
PubMed
Google Scholar
Ohara Y, Toyonaga T, Tanaka S, Ishida T, Hoshi N, Yoshizaki T, et al. Risk of stricture after endoscopic submucosal dissection for large rectal neoplasms. Endoscopy. 2016;48(1):62–70. https://doi.org/10.1055/s-0034-1392514.
Article
PubMed
Google Scholar
Abe S, Iyer PG, Oda I, Kanai N, Saito Y. Approaches for stricture prevention after esophageal endoscopic resection. Gastrointest Endosc. 2017;86(5):779–91. https://doi.org/10.1016/j.gie.2017.06.025.
Article
PubMed
Google Scholar
Yamamoto Y, Kikuchi D, Nagami Y, Nonaka K, Tsuji Y, Fujimoto A, et al. Management of adverse events related to endoscopic resection of upper gastrointestinal neoplasms: Review of the literature and recommendations from experts. Dig Endosc. 2019;31(Suppl 1):4–20. https://doi.org/10.1111/den.13388.
Article
PubMed
Google Scholar
Yamashita S, Kato M, Fujimoto A, Maehata T, Sasaki M, Inoshita N, et al. Inadequate steroid injection after esophageal ESD might cause mural necrosis. Endosc Int Open. 2019;7(2):E115–e21. https://doi.org/10.1055/a-0781-2333.
Article
PubMed
PubMed Central
Google Scholar
Yang GP, Soetikno RM. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2007;56(3):313–4. https://doi.org/10.1136/gut.2006.100073.
Article
PubMed
PubMed Central
Google Scholar
Iizuka T, Kikuchi D, Yamada A, Hoteya S, Kajiyama Y, Kaise M. Polyglycolic acid sheet application to prevent esophageal stricture after endoscopic submucosal dissection for esophageal squamous cell carcinoma. Endoscopy. 2015;47(4):341–4. https://doi.org/10.1055/s-0034-1390770.
Article
PubMed
Google Scholar
Saito Y, Tanaka T, Andoh A, Minematsu H, Hata K, Tsujikawa T, et al. Novel biodegradable stents for benign esophageal strictures following endoscopic submucosal dissection. Dig Dis Sci. 2008;53(2):330–3. https://doi.org/10.1007/s10620-007-9873-6.
Article
CAS
PubMed
Google Scholar
Honda M, Nakamura T, Hori Y, Shionoya Y, Nakada A, Sato T, et al. Process of healing of mucosal defects in the esophagus after endoscopic mucosal resection: histological evaluation in a dog model. Endoscopy. 2010;42(12):1092–5. https://doi.org/10.1055/s-0030-1255741.
Article
CAS
PubMed
Google Scholar
Baatar D, Jones MK, Pai R, Kawanaka H, Szabo IL, Moon WS, et al. Selective cyclooxygenase-2 blocker delays healing of esophageal ulcers in rats and inhibits ulceration-triggered c-Met/hepatocyte growth factor receptor induction and extracellular signal-regulated kinase 2 activation. Am J Pathol. 2002;160(3):963–72. https://doi.org/10.1016/S0002-9440(10)64918-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baatar D, Jones MK, Tsugawa K, Pai R, Moon WS, Koh GY, et al. Esophageal ulceration triggers expression of hypoxia-inducible factor-1 alpha and activates vascular endothelial growth factor gene: implications for angiogenesis and ulcer healing. Am J Pathol. 2002;161(4):1449–57. https://doi.org/10.1016/S0002-9440(10)64420-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baatar D, Kawanaka H, Szabo IL, Pai R, Jones MK, Kitano S, et al. Esophageal ulceration activates keratinocyte growth factor and its receptor in rats: implications for ulcer healing. Gastroenterology. 2002;122(2):458–68. https://doi.org/10.1053/gast.2002.31004.
Article
CAS
PubMed
Google Scholar
Ahluwalia A, Baatar D, Jones MK, Tarnawski AS. Novel mechanisms and signaling pathways of esophageal ulcer healing: the role of prostaglandin EP2 receptors, cAMP, and pCREB. Am J Physiol Gastrointest Liver Physiol. 2014;307(6):G602–10. https://doi.org/10.1152/ajpgi.00177.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuji H, Fuse Y, Kawamoto K, Fujino H, Kodama T. Healing process of experimental esophageal ulcers induced by acetic acid in rats. Scand J Gastroenterol Suppl. 1989;162:6–10. https://doi.org/10.3109/00365528909091112.
Article
CAS
PubMed
Google Scholar
Beye B, Barret M, Alatawi A, Beuvon F, Nicco C, Pratico CA, et al. Topical hemostatic powder promotes reepithelialization and reduces scar formation after extensive esophageal mucosal resection. Dis Esophagus. 2016;29(6):520–7. https://doi.org/10.1111/dote.12378.
Article
CAS
PubMed
Google Scholar
Dua KS, Sasikala M. Repairing the human esophagus with tissue engineering. Gastrointest Endosc. 2018;88(4):579–88. https://doi.org/10.1016/j.gie.2018.06.032.
Article
PubMed
Google Scholar
Desai JP, Moustarah F. Esophageal stricture. StatPearls. Treasure Island: StatPearls Publishing Copyright; 2021. StatPearls Publishing LLC
Google Scholar
Mastracci L, Grillo F, Parente P, Unti E, Battista S, Spaggiari P, et al. Non gastro-esophageal reflux disease related esophagitis: an overview with a histologic diagnostic approach. Pathologica. 2020;112(3):128–37. https://doi.org/10.32074/1591-951X-156.
Article
PubMed
PubMed Central
Google Scholar
Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117(3):514–21. https://doi.org/10.1172/JCI30587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohnʼs disease. Lancet. 2017;389(10080):1741–55. https://doi.org/10.1016/S0140-6736(16)31711-1.
Article
PubMed
Google Scholar
Burgmann T, Clara I, Graff L, Walker J, Lix L, Rawsthorne P, et al. The Manitoba Inflammatory Bowel Disease Cohort Study: prolonged symptoms before diagnosis--how much is irritable bowel syndrome? Clin Gastroenterol Hepatol. 2006;4(5):614–20. https://doi.org/10.1016/j.cgh.2006.03.003.
Article
PubMed
Google Scholar
Harbord M, Annese V, Vavricka SR, Allez M, Barreiro-de Acosta M, Boberg KM, et al. The first European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10(3):239–54. https://doi.org/10.1093/ecco-jcc/jjv213.
Article
PubMed
Google Scholar
Cheifetz AS. Management of active Crohn disease. Jama. 2013;309(20):2150–8. https://doi.org/10.1001/jama.2013.4466.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rieder F, Lawrance IC, Leite A, Sans M. Predictors of fibrostenotic Crohnʼs disease. Inflamm Bowel Dis. 2011;17(9):2000–7. https://doi.org/10.1002/ibd.21627.
Article
PubMed
Google Scholar
Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152(2):340–50 e6. https://doi.org/10.1053/j.gastro.2016.09.047.
Article
PubMed
Google Scholar
Rieder F, Zimmermann EM, Remzi FH, Sandborn WJ. Crohnʼs disease complicated by strictures: a systematic review. Gut. 2013;62(7):1072–84. https://doi.org/10.1136/gutjnl-2012-304353.
Article
CAS
PubMed
Google Scholar
Verity DH, Marr JE, Ohno S, Wallace GR, Stanford MR. Behçetʼs disease, the Silk Road and HLA-B51: historical and geographical perspectives. Tissue Antigens. 1999;54(3):213–20. https://doi.org/10.1034/j.1399-0039.1999.540301.x.
Article
CAS
PubMed
Google Scholar
Takeuchi M, Kastner DL, Remmers EF. The immunogenetics of Behçetʼs disease: a comprehensive review. J Autoimmun. 2015;64:137–48. https://doi.org/10.1016/j.jaut.2015.08.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura K, Iwata Y, Asai J, Kawakami T, Tsunemi Y, Takeuchi M, et al. Guidelines for the treatment of skin and mucosal lesions in Behçetʼs disease: a secondary publication. J Dermatol. 2020;47(3):223–35. https://doi.org/10.1111/1346-8138.15207.
Article
PubMed
Google Scholar
Hatemi I, Esatoglu SN, Hatemi G, Erzin Y, Yazici H, Celik AF. Characteristics, treatment, and long-term outcome of gastrointestinal involvement in Behcetʼs syndrome: a strobe-compliant observational study from a dedicated multidisciplinary center. Medicine (Baltimore). 2016;95(16):e3348. https://doi.org/10.1097/MD.0000000000003348.
Article
CAS
Google Scholar
Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15(10):630–8. https://doi.org/10.1038/nrmicro.2017.58.
Article
CAS
PubMed
Google Scholar
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587(7835):555–66. https://doi.org/10.1038/s41586-020-2938-9.
Article
CAS
PubMed
Google Scholar
Kanai T, Mikami Y, Hayashi A. A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. J Gastroenterol. 2015;50(9):928–39. https://doi.org/10.1007/s00535-015-1084-x.
Article
CAS
PubMed
Google Scholar
Moussata D, Goetz M, Gloeckner A, Kerner M, Campbell B, Hoffman A, et al. Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo. Gut. 2011;60(1):26–33. https://doi.org/10.1136/gut.2010.213264.
Article
PubMed
Google Scholar
Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5. https://doi.org/10.1073/pnas.0706625104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139(6):1844–54.e1.
Article
Google Scholar
Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–62. https://doi.org/10.1038/s41586-019-1237-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagayama M, Yano T, Atarashi K, Tanoue T, Sekiya M, Kobayashi Y, et al. TH1 cell-inducing Escherichia coli strain identified from the small intestinal mucosa of patients with Crohn's disease. Gut Microbes. 2020;12(1):1788898. https://doi.org/10.1080/19490976.2020.1788898.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buisine MP, Desreumaux P, Debailleul V, Gambiez L, Geboes K, Ectors N, et al. Abnormalities in mucin gene expression in Crohnʼs disease. Inflamm Bowel Dis. 1999;5(1):24–32. https://doi.org/10.1097/00054725-199902000-00004.
Article
CAS
PubMed
Google Scholar
Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456(7219):259–63. https://doi.org/10.1038/nature07416.
Article
PubMed
PubMed Central
Google Scholar
Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohnʼs disease. Gut. 2007;56(1):61–72. https://doi.org/10.1136/gut.2006.094375.
Article
CAS
PubMed
Google Scholar
Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol. 2019;20(8):970–9. https://doi.org/10.1038/s41590-019-0415-0.
Article
CAS
PubMed
Google Scholar
Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol. 2010;11(12):1093–101. https://doi.org/10.1038/ni.1952.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453(7192):236–40. https://doi.org/10.1038/nature06878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagihara Y, Yoshimatsu Y, Mikami Y, Takada Y, Mizuno S, Kanai T. Epigenetic regulation of T helper cells and intestinal pathogenicity. Semin Immunopathol. 2019;41(3):379–99. https://doi.org/10.1007/s00281-019-00732-9.
Article
PubMed
Google Scholar
Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis. Nature. 2020;577(7790):410–5. https://doi.org/10.1038/s41586-019-1865-0.
Article
CAS
PubMed
Google Scholar
Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581(7809):475–9. https://doi.org/10.1038/s41586-020-2193-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, Okabayashi K, et al. The liver-brain-gut neural arc maintains the T(reg) cell niche in the gut. Nature. 2020;585(7826):591–6. https://doi.org/10.1038/s41586-020-2425-3.
Article
CAS
PubMed
Google Scholar
Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature. 2020;578(7796):527–39. https://doi.org/10.1038/s41586-020-2025-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16(1):90–7. https://doi.org/10.1038/nm.2069.
Article
CAS
PubMed
Google Scholar
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, et al. Cellular and molecular mediators of intestinal fibrosis. J Crohns Colitis. 2017;11(12):1491–503. https://doi.org/10.1016/j.crohns.2014.09.008.
Article
PubMed
Google Scholar
Mikami Y, Takada Y, Hagihara Y, Kanai T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev. 2018;42:27–36. https://doi.org/10.1016/j.cytogfr.2018.07.002.
Article
CAS
PubMed
Google Scholar
Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, et al. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis. 2014;8(10):1147–65. https://doi.org/10.1016/j.crohns.2014.03.008.
Article
PubMed
Google Scholar
Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Phys. 1999;277(2):C183–201. https://doi.org/10.1152/ajpcell.1999.277.2.C183.
Article
CAS
Google Scholar
Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 2018;175(2):372–86.e17.
Article
CAS
Google Scholar
Croft AP, Campos J, Jansen K, Turner JD, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570(7760):246–51. https://doi.org/10.1038/s41586-019-1263-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarthy N, Manieri E, Storm EE, Saadatpour A, Luoma AM, Kapoor VN, et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell. 2020;26(3):391–402.e5.
Article
CAS
Google Scholar
Diebold RJ, Eis MJ, Yin M, Ormsby I, Boivin GP, Darrow BJ, et al. Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci U S A. 1995;92(26):12215–9. https://doi.org/10.1073/pnas.92.26.12215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity. 2000;12(2):171–81. https://doi.org/10.1016/S1074-7613(00)80170-3.
Article
CAS
PubMed
Google Scholar
Kulkarni AB, Ward JM, Yaswen L, Mackall CL, Bauer SR, Huh CG, et al. Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders. Am J Pathol. 1995;146(1):264–75.
CAS
PubMed
PubMed Central
Google Scholar
Wu F, Chakravarti S. Differential expression of inflammatory and fibrogenic genes and their regulation by NF-kappaB inhibition in a mouse model of chronic colitis. J Immunol. 2007;179(10):6988–7000. https://doi.org/10.4049/jimmunol.179.10.6988.
Article
CAS
PubMed
Google Scholar
Pender SL. Do metalloproteinases contribute to tissue destruction or remodeling in the inflamed gut? Inflamm Bowel Dis. 2008;14(Suppl 2):S136–7. https://doi.org/10.1002/ibd.20630.
Article
PubMed
Google Scholar
Ravi A, Garg P, Sitaraman SV. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm Bowel Dis. 2007;13(1):97–107. https://doi.org/10.1002/ibd.20011.
Article
PubMed
Google Scholar
Hutter S, van Haaften WT, Hünerwadel A, Baebler K, Herfarth N, Raselli T, et al. Intestinal activation of pH-sensing receptor OGR1 [GPR68] contributes to fibrogenesis. J Crohns Colitis. 2018;12(11):1348–58. https://doi.org/10.1093/ecco-jcc/jjy118.
Article
PubMed
Google Scholar