Crawford AH, Chambers C, Franklin RJM. Remyelination: the true regeneration of the central nervous system. J Comp Pathol. 2013;149(2-3):242–54. https://doi.org/10.1016/j.jcpa.2013.05.004.
Article
PubMed
CAS
Google Scholar
Neumann B, Segel M, Chalut KJ, Franklin RJM. Remyelination and ageing: Reversing the ravages of time. Mult Scler J. 2019;25(14):1835–41. https://doi.org/10.1177/1352458519884006.
Article
Google Scholar
Baaklini CS, Rawji KS, Duncan GJ, Ho MFS, Plemel JR. Central nervous system remyelination: roles of glia and innate immune cells. Front Mol Neurosci. 2019;12:225. https://doi.org/10.3389/fnmol.2019.00225.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):37–53. https://doi.org/10.1007/s00401-009-0601-5.
Article
PubMed
Google Scholar
van Tilborg E, de Theije CGM, van Hal M, Wagenaar N, de Vries LS, Benders MJ, et al. Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. GLIA. 2018;66(2):221–38. https://doi.org/10.1002/glia.23256.
Article
PubMed
Google Scholar
Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci. 2008;28(41):10434–42. https://doi.org/10.1523/JNEUROSCI.2831-08.2008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fancy SPJ, Zhao C, Franklin RJM. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci. 2004;27:247–54.
Article
CAS
Google Scholar
Hornig J, Fröb F, Vogl MR, Hermans-Borgmeyer I, Tamm ER, Wegner M. The transcription factors sox10 and myrf define an essential regulatory network module in differentiating oligodendrocytes. PLoS Genet. 2013;9(10):e1003907. https://doi.org/10.1371/journal.pgen.1003907.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weider M, Starost LJ, Groll K, Küspert M, Sock E, Wedel M, et al. Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning. Nat Commun. 2018;9(1):1–16. https://doi.org/10.1038/s41467-018-03336-3.
Article
CAS
Google Scholar
Emery B, Lu QR. Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb Perspect Biol. 2015;7(9). https://doi.org/10.1101/cshperspect.a020461.
Zhao C, Ma D, Zawadzka M, Fancy SPJ, Elis-Williams L, Bouvier G, et al. Sox2 sustains recruitment of oligodendrocyte progenitor cells following CNS demyelination and primes them for differentiation during remyelination. J Neurosci. 2015;35(33):11482–99. https://doi.org/10.1523/JNEUROSCI.3655-14.2015.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang H, Teng P, Du J, Meng J, Hu X, Tang T, et al. Interactive repression of MYRF self-cleavage and activity in oligodendrocyte differentiation by TMEM98 protein. J Neurosci. 2018;38(46):9829–39. https://doi.org/10.1523/JNEUROSCI.0154-18.2018.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fancy SPJ, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 2009;23(13):1571–85. https://doi.org/10.1101/gad.1806309.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weng C, Ding M, Fan S, Cao Q, Lu Z. Transcription factor 7 like 2 promotes oligodendrocyte differentiation and remyelination. Mol Med Rep. 2017;16(2):1864–70. https://doi.org/10.3892/mmr.2017.6843.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chew LJ, Ming X, McEllin B, Dupree J, Hong E, Catron M, et al. Sox17 regulates a program of oligodendrocyte progenitor cell expansion and differentiation during development and repair. Cell Rep. 2019;29:3173–3186.e7. https://doi.org/10.1016/j.celrep.2019.10.121.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Molecular Psychiatry. 2021;26(1):103–17. https://doi.org/10.1038/s41380-020-00930-0.
Article
PubMed
Google Scholar
Spitzer SO, Sitnikov S, Kamen Y, Evans KA, Kronenberg-Versteeg D, Dietmann S, et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron. 2019;101:459–471.e5. https://doi.org/10.1016/j.neuron.2018.12.020.
Article
PubMed
PubMed Central
CAS
Google Scholar
Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell. 2019;25:473–485.e8. https://doi.org/10.1016/j.stem.2019.08.015.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil M-T, Su M, Sen P, et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science. 2018;359(6376):684–8. https://doi.org/10.1126/science.aan4183.
Article
PubMed
CAS
Google Scholar
Jäkel S, Agirre E, Mendanha Falcão A, van Bruggen D, Lee KW, Knuesel I, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019;566(7745):543–7. https://doi.org/10.1038/s41586-019-0903-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Crawford AH, Tripathi RB, Foerster S, McKenzie I, Kougioumtzidou E, Grist M, et al. Pre-existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination. Am J Pathol. 2016;186(3):511–6. https://doi.org/10.1016/j.ajpath.2015.11.005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duncan ID, Radcliff AB, Heidari M, Kidd G, August BK, Wierenga LA. The adult oligodendrocyte can participate in remyelination. Proc Natl Acad Sci. 2018;115(50):E11807–16. https://doi.org/10.1073/pnas.1808064115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeung MSY, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature. 2019;566(7745):538–42. https://doi.org/10.1038/s41586-018-0842-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Factor DC, Barbeau AM, Allan KC, Hu LR, Madhavan M, Hoang AT, et al. Cell type-specific intralocus interactions reveal oligodendrocyte mechanisms in MS. Cell. 2020;181:382–395.e21. https://doi.org/10.1016/j.cell.2020.03.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet. 2003;362(9386):798–805. https://doi.org/10.1016/S0140-6736(03)14289-4.
Article
PubMed
CAS
Google Scholar
Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019;22(5):719–28. https://doi.org/10.1038/s41593-019-0372-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Uyeda A, Muramatsu R. Molecular mechanisms of central nervous system axonal regeneration and remyelination: a review. Int J Mol Sci. 2020;21(21):8116. https://doi.org/10.3390/ijms21218116.
Article
PubMed Central
CAS
Google Scholar
Petersen MA, Ryu JK, Chang K-J, Etxeberria A, Bardehle S, Mendiola AS, et al. Fibrinogen activates BMP signaling in oligodendrocyte progenitor cells and inhibits remyelination after vascular damage. Neuron. 2017;96:1003–1012.e7. https://doi.org/10.1016/j.neuron.2017.10.008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuroda M, Muramatsu R, Maedera N, Koyama Y, Hamaguchi M, Fujimura H, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127(9):3496–509. https://doi.org/10.1172/JCI94337.
Article
PubMed
PubMed Central
Google Scholar
Hamaguchi M, Muramatsu R, Fujimura H, Mochizuki H, Kataoka H, Yamashita T. Circulating transforming growth factor-β1 facilitates remyelination in the adult central nervous system. Elife. 2019;8:1–20. https://doi.org/10.7554/eLife.41869.
Article
Google Scholar
Ito M, Muramatsu R, Kato Y, Sharma B, Uyeda A, Tanabe S, et al. Age-dependent decline in remyelination capacity is mediated by apelin–APJ signaling. Nat Aging. 2021;1(3):284–94. https://doi.org/10.1038/s43587-021-00041-7.
Article
Google Scholar
Tennent GA, Brennan SO, Stangou AJ, O’Grady J, Hawkins PN, Pepys MB. Human plasma fibrinogen is synthesized in the liver. Blood. 2007;109(5):1971–4. https://doi.org/10.1182/blood-2006-08-040956.
Article
PubMed
CAS
Google Scholar
Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, et al. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage. J Neurosci. 2010;30(17):5843–54. https://doi.org/10.1523/JNEUROSCI.0137-10.2010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pous L, Deshpande SS, Nath S, Mezey S, Malik SC, Schildge S, et al. Fibrinogen induces neural stem cell differentiation into astrocytes in the subventricular zone via BMP signaling. Nat Commun. 2020;11(1):1–13. https://doi.org/10.1038/s41467-020-14466-y.
Article
CAS
Google Scholar
Nakasone A, Muramatsu R, Kato Y, Kawahara Y, Yamashita T. Myotube-derived factor promotes oligodendrocyte precursor cell proliferation. Biochem Biophys Res Commun. 2018;500(3):609–13. https://doi.org/10.1016/j.bbrc.2018.04.118.
Article
PubMed
CAS
Google Scholar
Kuroda M, Muramatsu R, Yamashita T. Cardiomyocyte-released factors stimulate oligodendrocyte precursor cells proliferation. Biochem Biophys Res Commun. 2017;482(4):1160–4. https://doi.org/10.1016/j.bbrc.2016.12.004.
Article
PubMed
CAS
Google Scholar
Matoba K, Muramatsu R, Yamashita T. Leptin sustains spontaneous remyelination in the adult central nervous system. Sci Rep. 2017;7(1):40397. https://doi.org/10.1038/srep40397.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pluvinage JV, Wyss-Coray T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat Rev Neurosci. 2020;21(2):93–102. https://doi.org/10.1038/s41583-019-0255-9.
Article
PubMed
CAS
Google Scholar
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience. 2006;7(1):41–53. https://doi.org/10.1038/nrn1824.
Article
PubMed
CAS
Google Scholar
Macvicar BA, Newman EA. Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol. 2015;7(5):1–15. https://doi.org/10.1101/cshperspect.a020388.
Article
Google Scholar
Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience. 2016;18(1):31–41. https://doi.org/10.1038/nrn.2016.159.
Article
PubMed
CAS
Google Scholar
Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters? Nature Reviews Neuroscience. 2010;11(4):227–38. https://doi.org/10.1038/nrn2803.
Article
PubMed
CAS
Google Scholar
Sofroniew MV. Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends in Immunology. 2020;41(9):758–70. https://doi.org/10.1016/j.it.2020.07.004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005;120(3):421–33. https://doi.org/10.1016/j.cell.2004.12.020.
Article
PubMed
CAS
Google Scholar
Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature. 2012;486(7403):410–4. https://doi.org/10.1038/nature11059.
Article
PubMed
PubMed Central
CAS
Google Scholar
Giovannoni F, Quintana FJ. The role of astrocytes in CNS inflammation. Trends Immunol. 2020;41(9):805–19. https://doi.org/10.1016/j.it.2020.07.007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24(3):312–25. https://doi.org/10.1038/s41593-020-00783-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32(18):6391–410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7. https://doi.org/10.1038/nature21029.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24(7):931–8. https://doi.org/10.1038/s41591-018-0051-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci. 2020;23(6):701–6. https://doi.org/10.1038/s41593-020-0624-8.
Article
PubMed
CAS
Google Scholar
Diaz-Castro B, Gangwani MR, Yu X, Coppola G, Khakh BS. Astrocyte molecular signatures in Huntington’s disease. Sci Transl Med. 2019;11(514):1–13. https://doi.org/10.1126/scitranslmed.aaw8546.
Article
CAS
Google Scholar
Al-Dalahmah O, Sosunov AA, Shaik A, Ofori K, Liu Y, Vonsattel JP, et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun. 2020;8(1):1–21. https://doi.org/10.1186/s40478-020-0880-6.
Article
CAS
Google Scholar
Sun S, Sun Y, Ling SC, Ferraiuolo L, McAlonis-Downes M, Zou Y, et al. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant sod1-mediated ALS. Proc Natl Acad Sci U S A. 2015;112(50):E6993–7002. https://doi.org/10.1073/pnas.1520639112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Batiuk MY, Martirosyan A, Wahis J, de Vin F, Marneffe C, Kusserow C, et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat Commun. 2020;11(1):1220. https://doi.org/10.1038/s41467-019-14198-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Itoh N, Itoh Y, Tassoni A, Ren E, Kaito M, Ohno A, et al. Cell-specific and region-specific transcriptomics in the multiple sclerosis model: Focus on astrocytes. Proc Natl Acad Sci. 2018;115(2):E302–9. https://doi.org/10.1073/pnas.1716032115.
Article
PubMed
CAS
Google Scholar
Rawji KS, Gonzalez Martinez GA, Sharma A, Franklin RJM. The role of astrocytes in remyelination. Trends Neurosci. 2020;43(8):596–607. https://doi.org/10.1016/j.tins.2020.05.006.
Article
PubMed
CAS
Google Scholar
Hinks GL, Franklin RJM. Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-β1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol Cell Neurosci. 1999;14(2):153–68. https://doi.org/10.1006/mcne.1999.0771.
Article
PubMed
CAS
Google Scholar
Messersmith DJ, Murtie JC, Le TQ, Frost EE, Armstrong RC. Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. J Neurosci Res. 2000;62(2):241–56. https://doi.org/10.1002/1097-4547(20001015)62:2<241::AID-JNR9>3.0.CO;2-D.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fischer R, Wajant H, Kontermann R, Pfizenmaier K, Maier O. Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia. 2014;62(2):272–83. https://doi.org/10.1002/glia.22605.
Article
PubMed
Google Scholar
Tsai H-H, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, et al. The chemokine feceptor CXCR2 controls oositioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell. 2002;110(3):373–83. https://doi.org/10.1016/S0092-8674(02)00838-3.
Article
PubMed
CAS
Google Scholar
Omari KM, John GR, Sealfon SC, Raine CS. CXC chemokine receptors on human oligodendrocytes: Implications for multiple sclerosis. Brain. 2005;128(5):1003–15. https://doi.org/10.1093/brain/awh479.
Article
PubMed
Google Scholar
Stankoff B, Aigrot MS, Noël F, Wattilliaux A, Zalc B, Lubetzki C. Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci. 2002;22(21):9221–7. https://doi.org/10.1523/jneurosci.22-21-09221.2002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deverman BE, Patterson PH. Exogenous leukemia inhibitory factor stimulates oligodendrocyte progenitor cell proliferation and enhances hippocampal remyelination. J Neurosci. 2012;32(6):2100–9. https://doi.org/10.1523/JNEUROSCI.3803-11.2012.
Article
PubMed
PubMed Central
CAS
Google Scholar
McMorris FA, Smith TM, DeSalvo S, Furlanetto RW. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development. Proc Natl Acad Sci. 1986;83(3):822–6. https://doi.org/10.1073/pnas.83.3.822.
Article
PubMed
PubMed Central
CAS
Google Scholar
Houben E, Janssens K, Hermans D, Vandooren J, van den Haute C, Schepers M, et al. Oncostatin M-induced astrocytic tissue inhibitor of metalloproteinases-1 drives remyelination. Proc Natl Acad Sci U S A. 2020;117(9):5028–38. https://doi.org/10.1073/pnas.1912910117.
Article
PubMed
PubMed Central
CAS
Google Scholar
Keough MB, Rogers JA, Zhang P, Jensen SK, Stephenson EL, Chen T, et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nat Commun. 2016;7(1). https://doi.org/10.1038/ncomms11312.
Hammond TR, Gadea A, Dupree J, Kerninon C, Nait-Oumesmar B, Aguirre A, et al. Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron. 2014;81(6):1442. https://doi.org/10.1016/j.neuron.2014.03.007.
Article
PubMed
CAS
Google Scholar
Stoffels JMJ, De Jonge JC, Stancic M, Nomden A, Van Strien ME, Ma D, et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain. 2013;136(1):116–31. https://doi.org/10.1093/brain/aws313.
Article
PubMed
Google Scholar
Czopka T, Von Holst A, Ffrench-Constant C, Faissner A. Regulatory mechanisms that mediate tenascin C-dependent inhibition of oligodendrocyte precursor differentiation. J Neurosci. 2010;30(37):12310–22. https://doi.org/10.1523/JNEUROSCI.4957-09.2010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hammond TR, McEllin B, Morton PD, Raymond M, Dupree J, Gallo V. Endothelin-B receptor activation in astrocytes regulates the rate of oligodendrocyte regeneration during remyelination. Cell Rep. 2015;13(10):2090–7. https://doi.org/10.1016/j.celrep.2015.11.002.
Article
PubMed
CAS
Google Scholar
Miyamoto N, Maki T, Shindo A, Liang AC, Maeda M, Egawa N, et al. Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J Neurosci. 2015;35(41):14002–8. https://doi.org/10.1523/JNEUROSCI.1592-15.2015.
Article
PubMed
PubMed Central
CAS
Google Scholar
Back SA, Tuohy TMF, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72. https://doi.org/10.1038/nm1279.
Article
PubMed
CAS
Google Scholar
Lindner M, Thümmler K, Arthur A, Brunner S, Elliott C, McElroy D, et al. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9. Brain. 2015;138(7):1875–93. https://doi.org/10.1093/brain/awv102.
Article
PubMed
Google Scholar
Colombo E, Triolo D, Bassani C, Bedogni F, Di Dario MD, Dina G, et al. Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc Natl Acad Sci U S A. 2021;118(27):e2025804118. https://doi.org/10.1073/pnas.2025804118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, et al. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain. 2013;136(1):147–67. https://doi.org/10.1093/brain/aws262.
Article
PubMed
Google Scholar
Berghoff SA, Gerndt N, Winchenbach J, Stumpf SK, Hosang L, Odoardi F, et al. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun. 2017;8(1):1–15. https://doi.org/10.1038/ncomms14241.
Article
CAS
Google Scholar
Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6(4):254–64. https://doi.org/10.1007/s13238-014-0131-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wright-Jin EC, Gutmann DH. Microglia as dynamic cellular mediators of brain function. Trends Mol Med. 2019;25(11):967–79. https://doi.org/10.1016/j.molmed.2019.08.013.
Article
PubMed
PubMed Central
Google Scholar
Kyritsis N, Kizil C, Brand M. Neuroinflammation and central nervous system regeneration in vertebrates. Trends in Cell Biology. 2014;24(2):128–35. https://doi.org/10.1016/j.tcb.2013.08.004.
Article
PubMed
CAS
Google Scholar
Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D, et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat Neurosci. 2019;22(7):1046–52. https://doi.org/10.1038/s41593-019-0418-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, et al. Microglia in neurological diseases: a road map to brain-disease dependent inflammatory response. Front Cell Neurosci. 2018;12. https://doi.org/10.3389/fncel.2018.00488.
Nathan C, Calingasan N, Nezezon J, Ding A, Lucia MS, La Perle K, et al. Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J Exp Med. 2005;202(9):1163–9. https://doi.org/10.1084/jem.20051529.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang Y, Le W. Differential Roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology. 2016;53(2):1181–94. https://doi.org/10.1007/s12035-014-9070-5.
Article
PubMed
CAS
Google Scholar
Kobashi S, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, et al. Transplantation of M2-deviated microglia promotes recovery of motor function after spinal cord injury in mice. Mol Ther. 2020;28(1):254–65. https://doi.org/10.1016/j.ymthe.2019.09.004.
Article
PubMed
CAS
Google Scholar
Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–8. https://doi.org/10.1038/nn.3469.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lloyd AF, Miron VE. The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol. 2019;15(8):447–58. https://doi.org/10.1038/s41582-019-0184-2.
Article
PubMed
Google Scholar
Lampron A, Larochelle A, Laflamme N, Préfontaine P, Plante MM, Sánchez MG, et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med. 2015;212(4):481–95. https://doi.org/10.1084/jem.20141656.
Article
PubMed
PubMed Central
CAS
Google Scholar
Natrajan MS, De La Fuente AG, Crawford AH, Linehan E, Nuñez V, Johnson KR, et al. Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain. 2015;138(12):3581–97. https://doi.org/10.1093/brain/awv289.
Article
PubMed
PubMed Central
Google Scholar
Miron VE. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. J Leukoc Biol. 2017;101(5):1103–8. https://doi.org/10.1189/jlb.3ri1116-494r.
Article
PubMed
CAS
Google Scholar
Sariol A, Mackin S, Allred MG, Ma C, Zhou Y, Zhang Q, et al. Microglia depletion exacerbates demyelination and impairs remyelination in a neurotropic coronavirus infection. Proc Natl Acad Sci U S A. 2020;117(39):24464–74. https://doi.org/10.1073/pnas.2007814117.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17(6):e3000330. https://doi.org/10.1371/journal.pbio.3000330.
Article
PubMed
PubMed Central
CAS
Google Scholar
Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Prim. 2018;4(1):1–27. https://doi.org/10.1038/s41572-018-0041-4.
Article
Google Scholar
Florou D, Katsara M, Feehan J, Dardiotis E, Apostolopoulos V. Anti-cd20 agents for multiple sclerosis: spotlight on ocrelizumab and ofatumumab. Brain Sciences. 2020;10(10):1–13. https://doi.org/10.3390/brainsci10100758.
Article
CAS
Google Scholar
Lubetzki C, Zalc B, Williams A, Stadelmann C, Stankoff B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 2020;19(8):678–88. https://doi.org/10.1016/S1474-4422(20)30140-X.
Article
PubMed
Google Scholar
Dargahi N, Katsara M, Tselios T, Androutsou M-E, de Courten M, Matsoukas J, et al. Multiple Sclerosis: immunopathology and Treatment Update. Brain Sci. 2017;7(12):78. https://doi.org/10.3390/brainsci7070078.
Article
PubMed Central
CAS
Google Scholar
Coetzee T, Thompson AJ. Unified understanding of MS course is required for drug development. Nature Reviews Neurology. 2018;14(4):191–2. https://doi.org/10.1038/nrneurol.2017.184.
Article
PubMed
Google Scholar
Meca-Lallana V, Berenguer-Ruiz L, Carreres-Polo J, Eichau-Madueño S, Ferrer-Lozano J, Forero L, et al. Deciphering Multiple Sclerosis Progression. Front Neurol. 2021;12:477. https://doi.org/10.3389/fneur.2021.608491.
Article
Google Scholar
Okano H. Strategic approaches to regeneration of a damaged central nervous system. In: Cornea. 2011;30 Suppl 1:S15–8. https://doi.org/10.1097/ICO.0b013e3182281879.
Article
Google Scholar
Nagoshi N, Okano H, Nakamura M. Regenerative therapy for spinal cord injury using iPSC technology. Inflammation and Regeneration. 2020;40(1):1–5. https://doi.org/10.1186/s41232-020-00149-0.
Article
Google Scholar
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Research and Therapy. 2019;10(1):1–22. https://doi.org/10.1186/s13287-019-1165-5.
Article
CAS
Google Scholar