Robin CH. Sur l'existence de deux espèces nouvelles d'éléments anatomiques qui se trouvent dans le canal médullaire des os. CR Soc Biol. 1849;1:49.
Aliprantis AO, Charles JF, Nakamura MC. The origins of the osteoclast. In: Osteoimmunology. 2nd ed; 2016.
Google Scholar
Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, et al. Osteoblastic cells are involved in osteoclast formation (in eng). Endocrinology. 1988;123:2600–2. https://doi.org/10.1210/endo-123-5-2600.
Article
CAS
PubMed
Google Scholar
Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL (in eng). Proc Natl Acad Sci U S A. 1998;95:3597–602.
Article
CAS
Google Scholar
Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation (in eng). Cell. 1998;93:165–76.
Article
CAS
Google Scholar
Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function (in eng). Nature. 1997;390:175–9. https://doi.org/10.1038/36593.
Article
CAS
PubMed
Google Scholar
Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells (in eng). J Biol Chem. 1997;272:25190–4.
Article
CAS
Google Scholar
Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development (in eng). Genes Dev. 1999;13:2412–24.
Article
CAS
Google Scholar
Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis (in eng). Nature. 1999;397:315–23. https://doi.org/10.1038/16852.
Article
CAS
PubMed
Google Scholar
Takayanagi H. RANKL as the master regulator of osteoclast differentiation (in eng). J Bone Miner Metab. 2021;39:13–8. https://doi.org/10.1007/s00774-020-01191-1.
Article
CAS
PubMed
Google Scholar
Tsukasaki M, Hamada K, Okamoto K, Nagashima K, Terashima A, Komatsu N, et al. LOX Fails to substitute for RANKL in osteoclastogenesis (in eng). J Bone Miner Res. 2017;32:434–9. https://doi.org/10.1002/jbmr.2990.
Article
CAS
PubMed
Google Scholar
Tanaka S. RANKL-independent osteoclastogenesis: a long-standing controversy (in eng). J Bone Miner Res. 2017;32:431–3. https://doi.org/10.1002/jbmr.3092.
Article
PubMed
Google Scholar
Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Ahmed-Ansari A, Sell KW, Pollard JW, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse (in eng). Proc Natl Acad Sci U S A. 1990;87:4828–32. https://doi.org/10.1073/pnas.87.12.4828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene (in eng). Nature. 1990;345:442–4. https://doi.org/10.1038/345442a0.
Article
CAS
PubMed
Google Scholar
Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease (in eng). Nat Rev Immunol. 2019;19:626–42. https://doi.org/10.1038/s41577-019-0178-8.
Article
CAS
PubMed
Google Scholar
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems (in eng). Physiol Rev. 2017;97:1295–349. https://doi.org/10.1152/physrev.00036.2016.
Article
CAS
PubMed
Google Scholar
Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells (in eng). J Exp Med. 2005;202:345–51. https://doi.org/10.1084/jem.20050645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yagi M, Ninomiya K, Fujita N, Suzuki T, Iwasaki R, Morita K, et al. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms (in eng). J Bone Miner Res. 2007;22:992–1001. https://doi.org/10.1359/jbmr.070401.
Article
CAS
PubMed
Google Scholar
Miyamoto H, Suzuki T, Miyauchi Y, Iwasaki R, Kobayashi T, et al. Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells (in eng). J Bone Miner Res. 2012;27:1289–97. https://doi.org/10.1002/jbmr.1575.
Article
CAS
PubMed
Google Scholar
Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation (in eng). Nat Med. 2006;12:1403–9. https://doi.org/10.1038/nm1514.
Article
CAS
PubMed
Google Scholar
Shin NY, Choi H, Neff L, Wu Y, Saito H, Ferguson SM, et al. Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts (in eng). J Cell Biol. 2014;207:73–89. https://doi.org/10.1083/jcb.201401137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kodama J, Kaito T. Osteoclast multinucleation: review of current literature (in eng). Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21165685.
Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density (in eng). Cell. 1997;89:309–19. https://doi.org/10.1016/s0092-8674(00)80209-3.
Article
CAS
PubMed
Google Scholar
Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro (in eng). Endocrinology. 1998;139:1329–37. https://doi.org/10.1210/endo.139.3.5837.
Article
PubMed
Google Scholar
Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification (in eng). Genes Dev. 1998;12:1260–8. https://doi.org/10.1101/gad.12.9.1260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin (in eng). Biochem Biophys Res Commun. 1998;247:610–5. https://doi.org/10.1006/bbrc.1998.8697.
Article
CAS
PubMed
Google Scholar
Tsukasaki M, Asano T, Muro R, Huynh NC, Komatsu N, Okamoto K, et al. OPG production matters where it happened (in eng). Cell Rep. 2020;32:108124. https://doi.org/10.1016/j.celrep.2020.108124.
Article
CAS
PubMed
Google Scholar
Cawley KM, Bustamante-Gomez NC, Guha AG, MacLeod RS, Xiong J, Gubrij I, et al. Local production of osteoprotegerin by osteoblasts suppresses bone resorption (in eng). Cell Rep. 2020;32:108052. https://doi.org/10.1016/j.celrep.2020.108052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function (in eng). Endocrinology. 2000;141:3478–84. https://doi.org/10.1210/endo.141.9.7634.
Article
CAS
PubMed
Google Scholar
Tsukasaki M, Huynh NC, Okamoto K, Muro R, Terashima A, Kurikawa Y, et al. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution (in eng). Nat Metab. 2020;2:1382–90. https://doi.org/10.1038/s42255-020-00318-y.
Article
CAS
PubMed
Google Scholar
Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment (in eng). Blood. 2004;104:4029–37. https://doi.org/10.1182/blood-2004-01-0041.
Article
CAS
PubMed
Google Scholar
Wakkach A, Mansour A, Dacquin R, Coste E, Jurdic P, Carle GF, et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts (in eng). Blood. 2008;112:5074–83. https://doi.org/10.1182/blood-2008-01-132787.
Article
CAS
PubMed
Google Scholar
Gallois A, Lachuer J, Yvert G, Wierinckx A, Brunet F, Rabourdin-Combe C, et al. Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes (in eng). J Bone Miner Res. 2010;25:661–72. https://doi.org/10.1359/jbmr.090829.
Article
CAS
PubMed
Google Scholar
Alnaeeli M, Penninger JM, Teng YT. Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells (in eng). J Immunol. 2006;177:3314–26. https://doi.org/10.4049/jimmunol.177.5.3314.
Article
CAS
PubMed
Google Scholar
Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis (in eng). Nat Med. 2009;15:1066–71. https://doi.org/10.1038/nm.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du J, Chen Y, Li Q, Han X, Cheng C, Wang Z, et al. HIF-1α deletion partially rescues defects of hematopoietic stem cell quiescence caused by Cited2 deficiency (in eng). Blood. 2012;119:2789–98. https://doi.org/10.1182/blood-2011-10-387902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stauffer D, Chang B, Huang J, Dunn A, Thayer M. p300/CREB-binding protein interacts with ATR and is required for the DNA replication checkpoint (in eng). J Biol Chem. 2007;282:9678–87. https://doi.org/10.1074/jbc.M609261200.
Article
CAS
PubMed
Google Scholar
Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia (in eng). Cell. 2019;177:1915–32.e16. https://doi.org/10.1016/j.cell.2019.04.040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenblatt MB, Ono N, Ayturk UM, Debnath S, Lalani S. The unmixing problem: a guide to applying single-cell RNA sequencing to bone (in eng). J Bone Miner Res. 2019;34:1207–19. https://doi.org/10.1002/jbmr.3802.
Article
PubMed
Google Scholar
Baccin C, Al-Sabah J, Velten L, Helbling PM, Grünschläger F, Hernández-Malmierca P, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization (in eng). Nat Cell Biol. 2020;22:38–48. https://doi.org/10.1038/s41556-019-0439-6.
Article
CAS
PubMed
Google Scholar
Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, et al. The bone marrow microenvironment at single-cell resolution (in eng). Nature. 2019;569:222–8. https://doi.org/10.1038/s41586-019-1104-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu W, Zhong L, Yao L, Wei Y, Gui T, Li Z, et al. Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss (in eng). J Clin Invest. 2021;131. https://doi.org/10.1172/JCI140214.
Everts V, de Vries TJ, Helfrich MH. Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions (in eng). Biochim Biophys Acta. 2009;1792:757–65. https://doi.org/10.1016/j.bbadis.2009.05.004.
Article
CAS
PubMed
Google Scholar
Everts V, Korper W, Jansen DC, Steinfort J, Lammerse I, Heera S, et al. Functional heterogeneity of osteoclasts: matrix metalloproteinases participate in osteoclastic resorption of calvarial bone but not in resorption of long bone (in eng). FASEB J. 1999;13:1219–30. https://doi.org/10.1096/fasebj.13.10.1219.
Article
CAS
PubMed
Google Scholar
Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, et al. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism (in eng). J Biol Chem. 2006;281:33814–24. https://doi.org/10.1074/jbc.M607290200.
Article
CAS
PubMed
Google Scholar
Nishida D, Arai A, Zhao L, Yang M, Nakamichi Y, Horibe K, et al. RANKL/OPG ratio regulates odontoclastogenesis in damaged dental pulp (in eng). Sci Rep. 2021;11:4575. https://doi.org/10.1038/s41598-021-84354-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romeo SG, Alawi KM, Rodrigues J, Singh A, Kusumbe AP, Ramasamy SK. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation (in eng). Nat Cell Biol. 2019;21:430–41. https://doi.org/10.1038/s41556-019-0304-7.
Article
CAS
PubMed
Google Scholar
Sivaraj KK, Majev PG, Jeong HW, Dharmalingam B, Zeuschner D, Schröder S, et al. Mesenchymal stromal cell-derived septoclasts resorb cartilage during developmental ossification and fracture healing (in eng). Nat Commun. 2022;13:571. https://doi.org/10.1038/s41467-022-28142-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasegawa T, Kikuta J, Sudo T, Matsuura Y, Matsui T, Simmons S, et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1 (in eng). Nat Immunol. 2019;20:1631–43. https://doi.org/10.1038/s41590-019-0526-7.
Article
CAS
PubMed
Google Scholar
Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function (in eng). J Clin Invest. 2012;122:4592–605. https://doi.org/10.1172/JCI60920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madel MB, Ibáñez L, Ciucci T, Halper J, Rouleau M, Boutin A, et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of (in eng). Elife. 2020;9. https://doi.org/10.7554/eLife.54493.
Ibáñez L, Abou-Ezzi G, Ciucci T, Amiot V, Belaïd N, Obino D, et al. Inflammatory osteoclasts prime TNFα-producing CD4 (in eng). J Bone Miner Res. 2016;31:1899–908. https://doi.org/10.1002/jbmr.2868.
Article
CAS
PubMed
Google Scholar
Yahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, et al. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair (in eng). Nat Cell Biol. 2020;22:49–59. https://doi.org/10.1038/s41556-019-0437-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novak S, Roeder E, Kalinowski J, Jastrzebski S, Aguila HL, Lee SK, et al. Osteoclasts derive predominantly from bone marrow-resident CX3CR1+ precursor cells in homeostasis, whereas circulating CX3CR1+ cells contribute to osteoclast development during fracture repair. J Immunol. 2020;204:868–78. https://doi.org/10.4049/jimmunol.1900665.
Article
CAS
PubMed
Google Scholar
Kwack KH, Zhang L, Sohn J, Maglaras V, Thiyagarajan R, Kirkwood KL. Novel preosteoclast populations in obesity-associated periodontal disease (in eng). J Dent Res. 2022;101:348–56. https://doi.org/10.1177/00220345211040729.
Article
CAS
PubMed
Google Scholar
McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption (in eng). Cell. 2021;184:1940. https://doi.org/10.1016/j.cell.2021.03.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iqbal J, Zaidi M. Endothelial cells revealed as chondroclasts (in eng). Nat Cell Biol. 2019;21:417–9. https://doi.org/10.1038/s41556-019-0306-5.
Article
CAS
PubMed
Google Scholar
Tsukasaki M. RANKL and osteoimmunology in periodontitis (in eng). J Bone Miner Metab. 2021;39:82–90. https://doi.org/10.1007/s00774-020-01165-3.
Article
CAS
PubMed
Google Scholar
Tsukasaki M, Komatsu N, Nagashima K, Nitta T, Pluemsakunthai W, Shukunami C, et al. Host defense against oral microbiota by bone-damaging T cells (in eng). Nat Commun. 2018;9:701. https://doi.org/10.1038/s41467-018-03147-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satoh T, Nakagawa K, Sugihara F, Kuwahara R, Ashihara M, Yamane F, et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis (in eng). Nature. 2017;541:96–101. https://doi.org/10.1038/nature20611.
Article
CAS
PubMed
Google Scholar
Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts (in eng). Nature. 2019;568:541–5. https://doi.org/10.1038/s41586-019-1105-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kodama H, Yamasaki A, Abe M, Niida S, Hakeda Y, Kawashima H. Transient recruitment of osteoclasts and expression of their function in osteopetrotic (op/op) mice by a single injection of macrophage colony-stimulating factor (in eng). J Bone Miner Res. 1993;8:45–50. https://doi.org/10.1002/jbmr.5650080107.
Article
CAS
PubMed
Google Scholar
Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, et al. Identification of cell cycle-arrested quiescent osteoclast precursors in vivo (in eng). J Cell Biol. 2009;184:541–54. https://doi.org/10.1083/jcb.200806139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arai A, Mizoguchi T, Harada S, Kobayashi Y, Nakamichi Y, Yasuda H, et al. Fos plays an essential role in the upregulation of RANK expression in osteoclast precursors within the bone microenvironment (in eng). J Cell Sci. 2012;125:2910–7. https://doi.org/10.1242/jcs.099986.
Article
CAS
PubMed
Google Scholar
Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis (in eng). Nat Med. 2012;18:405–12. https://doi.org/10.1038/nm.2653.
Article
CAS
PubMed
Google Scholar