Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12(4):205–17. https://doi.org/10.1038/nrgastro.2015.34.
Article
PubMed
Google Scholar
Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res. 2019;2019:1–16. https://doi.org/10.1155/2019/7247238.
Article
CAS
Google Scholar
Friedrich M, Pohin M, Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity. 2019;50(4):992–1006. https://doi.org/10.1016/j.immuni.2019.03.017.
Article
CAS
PubMed
Google Scholar
Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflammatory bowel disease. Intest Res. 2018;16(1):26–42. https://doi.org/10.5217/ir.2018.16.1.26.
Article
PubMed
PubMed Central
Google Scholar
Kojima F, Kapoor M, Kawai S, Crofford LJ. New insights into eicosanoid biosynthetic pathways: implications for arthritis. Expert Rev Clin Immunol. 2006;2(2):277–91. https://doi.org/10.1586/1744666X.2.2.277.
Article
CAS
PubMed
Google Scholar
Kojima F, Matnani RG, Kawai S, Ushikubi F, Crofford LJ. Potential roles of microsomal prostaglandin E synthase-1 in rheumatoid arthritis. Inflamm Regen. 2011;31(2):157–66. https://doi.org/10.2492/inflammregen.31.157.
Article
CAS
PubMed
Google Scholar
Jakobsson PJ, Thoren S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A. 1999;96(13):7220–5. https://doi.org/10.1073/pnas.96.13.7220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem. 2000;275(42):32783–92. https://doi.org/10.1074/jbc.M003505200.
Article
CAS
PubMed
Google Scholar
Murakami M, Nakashima K, Kamei D, Masuda S, Ishikawa Y, Ishii T, et al. Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J Biol Chem. 2003;278(39):37937–47. https://doi.org/10.1074/jbc.M305108200.
Article
CAS
PubMed
Google Scholar
Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem. 2000;275(42):32775–82. https://doi.org/10.1074/jbc.M003504200.
Article
CAS
PubMed
Google Scholar
Sharon P, Ligumsky M, Rachmilewitz D, Zor U. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology. 1978;75(4):638–40. https://doi.org/10.1016/S0016-5085(19)31672-5.
Article
CAS
PubMed
Google Scholar
Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999;79(4):1193–226. https://doi.org/10.1152/physrev.1999.79.4.1193.
Article
CAS
PubMed
Google Scholar
Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest. 2002;109(7):883–93. https://doi.org/10.1172/JCI14459.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang GL, Nieves A, Im WB, Old DW, Dinh DT, Wheeler L. The prevention of colitis by E prostanoid receptor 4 agonist through enhancement of epithelium survival and regeneration. J Pharmacol Exp Ther. 2007;320(1):22–8. https://doi.org/10.1124/jpet.106.111146.
Article
CAS
PubMed
Google Scholar
Matsumoto Y, Nakanishi Y, Yoshioka T, Yamaga Y, Masuda T, Fukunaga Y, et al. Epithelial EP4 plays an essential role in maintaining homeostasis in colon. Sci Rep. 2019;9(1):15244. https://doi.org/10.1038/s41598-019-51639-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vong L, Ferraz JG, Panaccione R, Beck PL, Wallace JL. A pro-resolution mediator, prostaglandin D(2), is specifically up-regulated in individuals in long-term remission from ulcerative colitis. Proc Natl Acad Sci U S A. 2010;107(26):12023–7. https://doi.org/10.1073/pnas.1004982107.
Article
PubMed
PubMed Central
Google Scholar
Korelitz BI. Role of nonsteroidal anti-inflammatory drugs in exacerbation of inflammatory bowel disease. J Clin Gastroenterol. 2016;50(2):97–8. https://doi.org/10.1097/MCG.0000000000000444.
Article
PubMed
Google Scholar
Engblom D, Saha S, Engstrom L, Westman M, Audoly LP, Jakobsson PJ, et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat Neurosci. 2003;6(11):1137–8. https://doi.org/10.1038/nn1137.
Article
CAS
PubMed
Google Scholar
Saha S, Engstrom L, Mackerlova L, Jakobsson PJ, Blomqvist A. Impaired febrile responses to immune challenge in mice deficient in microsomal prostaglandin E synthase-1. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1100–7. https://doi.org/10.1152/ajpregu.00872.2004.
Article
CAS
PubMed
Google Scholar
Inada M, Matsumoto C, Uematsu S, Akira S, Miyaura C. Membrane-bound prostaglandin E synthase-1-mediated prostaglandin E2 production by osteoblast plays a critical role in lipopolysaccharide-induced bone loss associated with inflammation. J Immunol. 2006;177(3):1879–85. https://doi.org/10.4049/jimmunol.177.3.1879.
Article
CAS
PubMed
Google Scholar
Trebino CE, Stock JL, Gibbons CP, Naiman BM, Wachtmann TS, Umland JP, et al. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci U S A. 2003;100(15):9044–9. https://doi.org/10.1073/pnas.1332766100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uematsu S, Matsumoto M, Takeda K, Akira S. Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol. 2002;168(11):5811–6. https://doi.org/10.4049/jimmunol.168.11.5811.
Article
CAS
PubMed
Google Scholar
Kapoor M, Kojima F, Qian M, Yang L, Crofford LJ. Shunting of prostanoid biosynthesis in microsomal prostaglandin E synthase-1 null embryo fibroblasts: regulatory effects on inducible nitric oxide synthase expression and nitrite synthesis. Faseb J. 2006;20(13):2387–9. https://doi.org/10.1096/fj.06-6366fje.
Article
CAS
PubMed
Google Scholar
Kapoor M, Kojima F, Qian M, Yang L, Crofford LJ. Microsomal prostaglandin E synthase-1 deficiency is associated with elevated peroxisome proliferator-activated receptor gamma: regulation by prostaglandin E2 via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem. 2007;282(8):5356–66. https://doi.org/10.1074/jbc.M610153200.
Article
CAS
PubMed
Google Scholar
Kojima F, Kapoor M, Yang L, Fleishaker EL, Ward MR, Monrad SU, et al. Defective generation of a humoral immune response is associated with a reduced incidence and severity of collagen-induced arthritis in microsomal prostaglandin E synthase-1 null mice. J Immunol. 2008;180(12):8361–8. https://doi.org/10.4049/jimmunol.180.12.8361.
Article
CAS
PubMed
Google Scholar
Kojima F, Frolov A, Matnani R, Woodward JG, Crofford LJ. Reduced T cell-dependent humoral immune response in microsomal prostaglandin E synthase-1 null mice is mediated by nonhematopoietic cells. J Immunol. 2013;191(10):4979–88. https://doi.org/10.4049/jimmunol.1301942.
Article
CAS
PubMed
Google Scholar
Maseda D, Johnson EM, Nyhoff LE, Baron B, Kojima F, Wilhelm AJ, et al. mPGES1-dependent prostaglandin E2 (PGE2) controls antigen-specific Th17 and Th1 responses by regulating T autocrine and paracrine PGE2 production. J Immunol. 2018;200(2):725–36. https://doi.org/10.4049/jimmunol.1601808.
Article
CAS
PubMed
Google Scholar
Subbaramaiah K, Yoshimatsu K, Scherl E, Das KM, Glazier KD, Golijanin D, et al. Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem. 2004;279(13):12647–58. https://doi.org/10.1074/jbc.M312972200.
Article
CAS
PubMed
Google Scholar
Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014;104(1):15.25.1–15.25.14. https://doi.org/10.1002/0471142735.im1525s104.
Article
Google Scholar
Hara S, Kamei D, Sasaki Y, Tanemoto A, Nakatani Y, Murakami M. Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochimie. 2010;92(6):651–9. https://doi.org/10.1016/j.biochi.2010.02.007.
Article
CAS
PubMed
Google Scholar
Montrose DC, Nakanishi M, Murphy RC, Zarini S, McAleer JP, Vella AT, et al. The role of PGE2 in intestinal inflammation and tumorigenesis. Prostaglandins Other Lipid Mediat. 2015;116-117:26–36. https://doi.org/10.1016/j.prostaglandins.2014.10.002.
Article
CAS
PubMed
Google Scholar
Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12(7):1295–309. https://doi.org/10.1038/nprot.2017.044.
Article
CAS
PubMed
Google Scholar
Hamamoto N, Maemura K, Hirata I, Murano M, Sasaki S, Katsu K. Inhibition of dextran sulphate sodium (DSS)-induced colitis in mice by intracolonically administered antibodies against adhesion molecules (endothelial leucocyte adhesion molecule-1 (ELAM-1) or intercellular adhesion molecule-1 (ICAM-1)). Clin Exp Immunol. 1999;117(3):462–8. https://doi.org/10.1046/j.1365-2249.1999.00985.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69(2):238–49.
CAS
PubMed
Google Scholar
Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV, et al. Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest. 2007;117(12):3909–21. https://doi.org/10.1172/JCI33084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciceri P, Zhang Y, Shaffer AF, Leahy KM, Woerner MB, Smith WG, et al. Pharmacology of celecoxib in rat brain after kainate administration. J Pharmacol Exp Ther. 2002;302(3):846–52. https://doi.org/10.1124/jpet.302.3.846.
Article
CAS
PubMed
Google Scholar
Weigmann B, Tubbe I, Seidel D, Nicolaev A, Becker C, Neurath MF. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat Protoc. 2007;2(10):2307–11. https://doi.org/10.1038/nprot.2007.315.
Article
CAS
PubMed
Google Scholar
Laky K, Kruisbeek AM. In vivo depletion of T lymphocytes. Curr Protoc Immunol. 2016;113(1). https://doi.org/10.1002/0471142735.im0401s113.
Diaz-Granados N, Howe K, Lu J, McKay DM. Dextran sulfate sodium-induced colonic histopathology, but not altered epithelial ion transport, is reduced by inhibition of phosphodiesterase activity. Am J Pathol. 2000;156(6):2169–77. https://doi.org/10.1016/S0002-9440(10)65087-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809. https://doi.org/10.1038/nri2653.
Article
CAS
PubMed
Google Scholar
Chan CB, Abe M, Hashimoto N, Hao C, Williams IR, Liu X, et al. Mice lacking asparaginyl endopeptidase develop disorders resembling hemophagocytic syndrome. Proc Natl Acad Sci U S A. 2009;106(2):468–73. https://doi.org/10.1073/pnas.0809824105.
Article
PubMed
Google Scholar
Bauer W, Rauner M, Haase M, Kujawski S, Arabanian LS, Habermann I, et al. Osteomyelosclerosis, anemia and extramedullary hematopoiesis in mice lacking the transcription factor NFATc2. Haematologica. 2011;96(11):1580–8. https://doi.org/10.3324/haematol.2011.042515.
Article
PubMed
PubMed Central
Google Scholar
Spencer RP, Pearson HA. The spleen as a hematological organ. Semin Nucl Med. 1975;5(1):95–102. https://doi.org/10.1016/s0001-2998(75)80007-9.
Article
CAS
PubMed
Google Scholar
Kim CH. Homeostatic and pathogenic extramedullary hematopoiesis. J Blood Med. 2010;1:13–9. https://doi.org/10.2147/JBM.S7224.
Article
PubMed
PubMed Central
Google Scholar
Schubert TE, Obermaier F, Ugocsai P, Mannel DN, Echtenacher B, Hofstadter F, et al. Murine models of anaemia of inflammation: extramedullary haematopoiesis represents a species specific difference to human anaemia of inflammation that can be eliminated by splenectomy. Int J Immunopathol Pharmacol. 2008;21(3):577–84. https://doi.org/10.1177/039463200802100310.
Article
CAS
PubMed
Google Scholar
Ajuebor MN, Singh A, Wallace JL. Cyclooxygenase-2-derived prostaglandin D(2) is an early anti-inflammatory signal in experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2000;279(1):G238–44. https://doi.org/10.1152/ajpgi.2000.279.1.G238.
Article
CAS
PubMed
Google Scholar
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8. https://doi.org/10.1038/nature04753.
Article
CAS
PubMed
Google Scholar
Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009;30(4):576–87. https://doi.org/10.1016/j.immuni.2009.02.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89. https://doi.org/10.1016/j.immuni.2006.01.001.
Article
CAS
PubMed
Google Scholar
Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8(9):950–7. https://doi.org/10.1038/ni1497.
Article
CAS
PubMed
Google Scholar
Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260(5107):547–9. https://doi.org/10.1126/science.8097338.
Article
CAS
PubMed
Google Scholar
Morteau O, Morham SG, Sellon R, Dieleman LA, Langenbach R, Smithies O, et al. Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. J Clin Invest. 2000;105(4):469–78. https://doi.org/10.1172/JCI6899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka K, Suemasu S, Ishihara T, Tasaka Y, Arai Y, Mizushima T. Inhibition of both COX-1 and COX-2 and resulting decrease in the level of prostaglandins E2 is responsible for non-steroidal anti-inflammatory drug (NSAID)-dependent exacerbation of colitis. Eur J Pharmacol. 2009;603(1-3):120–32. https://doi.org/10.1016/j.ejphar.2008.11.058.
Article
CAS
PubMed
Google Scholar
Sann H, Erichsen J, Hessmann M, Pahl A, Hoffmeyer A. Efficacy of drugs used in the treatment of IBD and combinations thereof in acute DSS-induced colitis in mice. Life Sci. 2013;92(12):708–18. https://doi.org/10.1016/j.lfs.2013.01.028.
Article
CAS
PubMed
Google Scholar
Watanabe Y, Murata T, Amakawa M, Miyake Y, Handa T, Konishi K, et al. KAG-308, a newly-identified EP4-selective agonist shows efficacy for treating ulcerative colitis and can bring about lower risk of colorectal carcinogenesis by oral administration. Eur J Pharmacol. 2015;754:179–89. https://doi.org/10.1016/j.ejphar.2015.02.021.
Article
CAS
PubMed
Google Scholar
Trebino CE, Eskra JD, Wachtmann TS, Perez JR, Carty TJ, Audoly LP. Redirection of eicosanoid metabolism in mPGES-1-deficient macrophages. J Biol Chem. 2005; doi:M412075200 [pii];280(17):16579–85. https://doi.org/10.1074/jbc.M412075200.
Article
CAS
PubMed
Google Scholar
Boulet L, Ouellet M, Bateman KP, Ethier D, Percival MD, Riendeau D, et al. Deletion of microsomal prostaglandin E2 (PGE2) synthase-1 reduces inducible and basal PGE2 production and alters the gastric prostanoid profile. J Biol Chem. 2004;279(22):23229–37. https://doi.org/10.1074/jbc.M400443200 M400443200 [pii].
Article
CAS
PubMed
Google Scholar
Monrad SU, Kojima F, Kapoor M, Kuan EL, Sarkar S, Randolph GJ, et al. Genetic deletion of mPGES-1 abolishes PGE2 production in murine dendritic cells and alters the cytokine profile, but does not affect maturation or migration. Prostaglandins Leukot Essent Fatty Acids. 2011;84(3-4):113–21. https://doi.org/10.1016/j.plefa.2010.10.003.
Article
CAS
PubMed
Google Scholar
Hokari R, Kurihara C, Nagata N, Aritake K, Okada Y, Watanabe C, et al. Increased expression of lipocalin-type-prostaglandin D synthase in ulcerative colitis and exacerbating role in murine colitis. Am J Physiol Gastrointest Liver Physiol. 2011;300(3):G401–8. https://doi.org/10.1152/ajpgi.00351.2010.
Article
CAS
PubMed
Google Scholar
Iwanaga K, Nakamura T, Maeda S, Aritake K, Hori M, Urade Y, et al. Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Res. 2014;74(11):3011–9. https://doi.org/10.1158/0008-5472.CAN-13-2792.
Article
CAS
PubMed
Google Scholar
Tessner TG, Cohn SM, Schloemann S, Stenson WF. Prostaglandins prevent decreased epithelial cell proliferation associated with dextran sodium sulfate injury in mice. Gastroenterology. 1998;115(4):874–82. https://doi.org/10.1016/s0016-5085(98)70259-8.
Article
CAS
PubMed
Google Scholar
Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, et al. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology. 2006;131(3):862–77. https://doi.org/10.1053/j.gastro.2006.06.017.
Article
CAS
PubMed
Google Scholar
Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology. 1998;115(2):297–306. https://doi.org/10.1016/s0016-5085(98)70196-9.
Article
CAS
PubMed
Google Scholar
Ishikawa TO, Oshima M, Herschman HR. Cox-2 deletion in myeloid and endothelial cells, but not in epithelial cells, exacerbates murine colitis. Carcinogenesis. 2011;32(3):417–26. https://doi.org/10.1093/carcin/bgq268.
Article
CAS
PubMed
Google Scholar
Maseda D, Banerjee A, Johnson EM, Washington MK, Kim H, Lau KS, et al. mPGES-1-mediated production of PGE2 and EP4 receptor sensing regulate T cell colonic inflammation. Front Immunol. 2018;9:2954. https://doi.org/10.3389/fimmu.2018.02954.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakanishi M, Perret C, Meuillet EJ, Rosenberg DW. Non-cell autonomous effects of targeting inducible PGE2 synthesis during inflammation-associated colon carcinogenesis. Carcinogenesis. 2015;36(4):478–86. https://doi.org/10.1093/carcin/bgv004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Buchler MW. Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion. 2000;62(4):240–8. https://doi.org/10.1159/000007822.
Article
CAS
PubMed
Google Scholar
Ito R, Shin-Ya M, Kishida T, Urano A, Takada R, Sakagami J, et al. Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clin Exp Immunol. 2006;146(2):330–8. https://doi.org/10.1111/j.1365-2249.2006.03214.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito R, Kita M, Shin-Ya M, Kishida T, Urano A, Takada R, et al. Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem Biophys Res Commun. 2008;377(1):12–6. https://doi.org/10.1016/j.bbrc.2008.09.019.
Article
CAS
PubMed
Google Scholar
Globig AM, Hennecke N, Martin B, Seidl M, Ruf G, Hasselblatt P, et al. Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-gamma+IL-17+coproducing CD4+ T cells in active inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(12):2321–9. https://doi.org/10.1097/MIB.0000000000000210.
Article
PubMed
Google Scholar
Barrie A, Khare A, Henkel M, Zhang Y, Barmada MM, Duerr R, et al. Prostaglandin E2 and IL-23 plus IL-1beta differentially regulate the Th1/Th17 immune response of human CD161(+) CD4(+) memory T cells. Clin Transl Sci. 2011;4(4):268–73. https://doi.org/10.1111/j.1752-8062.2011.00300.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med. 2009;15(6):633–40. https://doi.org/10.1038/nm.1968.
Article
CAS
PubMed
Google Scholar
Araki Y, Mukaisho K, Sugihara H, Fujiyama Y, Hattori T. Proteus mirabilis sp. intestinal microflora grow in a dextran sulfate sodium-rich environment. Int J Mol Med. 2010;25(2):203–8.
CAS
PubMed
Google Scholar
Bamba S, Andoh A, Ban H, Imaeda H, Aomatsu T, Kobori A, et al. The severity of dextran sodium sulfate-induced colitis can differ between dextran sodium sulfate preparations of the same molecular weight range. Dig Dis Sci. 2012;57(2):327–34. https://doi.org/10.1007/s10620-011-1881-x.
Article
CAS
PubMed
Google Scholar
Sun X, He S, Lv C, Sun X, Wang J, Zheng W, et al. Analysis of murine and human Treg subsets in inflammatory bowel disease. Mol Med Rep. 2017;16(3):2893–8. https://doi.org/10.3892/mmr.2017.6912.
Article
CAS
PubMed
Google Scholar
Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.
CAS
PubMed
Google Scholar
Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol. 2003;170(8):3939–43. https://doi.org/10.4049/jimmunol.170.8.3939.
Article
CAS
PubMed
Google Scholar
Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868–78. https://doi.org/10.1053/j.gastro.2005.03.043.
Article
CAS
PubMed
Google Scholar
Yu QT, Saruta M, Avanesyan A, Fleshner PR, Banham AH, Papadakis KA. Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis. 2007;13(2):191–9. https://doi.org/10.1002/ibd.20053.
Article
PubMed
Google Scholar
Saruta M, Yu QT, Fleshner PR, Mantel PY, Schmidt-Weber CB, Banham AH, et al. Characterization of FOXP3+CD4+ regulatory T cells in Crohn's disease. Clin Immunol. 2007;125(3):281–90. https://doi.org/10.1016/j.clim.2007.08.003.
Article
CAS
PubMed
Google Scholar
Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol. 2006;177(1):246–54. https://doi.org/10.4049/jimmunol.177.1.246.
Article
CAS
PubMed
Google Scholar
Chinen T, Komai K, Muto G, Morita R, Inoue N, Yoshida H, et al. Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance. Nat Commun. 2011;2(1):190. https://doi.org/10.1038/ncomms1181.
Article
CAS
PubMed
Google Scholar
Axelsson LG, Landstrom E, Goldschmidt TJ, Gronberg A, Bylund-Fellenius AC. Dextran sulfate sodium (DSS) induced experimental colitis in immunodeficient mice: effects in CD4(+)-cell depleted, athymic and NK-cell depleted SCID mice. Inflamm Res. 1996;45(4):181–91. https://doi.org/10.1007/BF02285159.
Article
CAS
PubMed
Google Scholar
Shintani N, Nakajima T, Okamoto T, Kondo T, Nakamura N, Mayumi T. Involvement of CD4+ T cells in the development of dextran sulfate sodium-induced experimental colitis and suppressive effect of IgG on their action. Gen Pharmacol. 1998;31(3):477–81. https://doi.org/10.1016/s0306-3623(98)00004-4.
Article
CAS
PubMed
Google Scholar
Yamane H, Sugimoto Y, Tanaka S, Ichikawa A. Prostaglandin E(2) receptors, EP2 and EP4, differentially modulate TNF-alpha and IL-6 production induced by lipopolysaccharide in mouse peritoneal neutrophils. Biochem Biophys Res Commun. 2000;278(1):224–8. https://doi.org/10.1006/bbrc.2000.3779.
Article
CAS
PubMed
Google Scholar
Akaogi J, Yamada H, Kuroda Y, Nacionales DC, Reeves WH, Satoh M. Prostaglandin E2 receptors EP2 and EP4 are up-regulated in peritoneal macrophages and joints of pristane-treated mice and modulate TNF-alpha and IL-6 production. J Leukoc Biol. 2004;76(1):227–36. https://doi.org/10.1189/jlb.1203627.
Article
CAS
PubMed
Google Scholar