Aloia L, McKie MA, Vernaz G, Cordero-Espinoza L, Aleksieva N, van den Ameele J, et al. Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nat Cell Biol. 2019;21:1321–33. https://doi.org/10.1038/s41556-019-0402-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee G, Espirito Santo AI, Zwingenberger S, Cai L, Vogl T, Feldmann M, et al. Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proc Natl Acad Sci USA. 2018;115:E4463–72. https://doi.org/10.1073/pnas.1802893115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rabiller L, Labit E, Guissard C, Gilardi S, Guiard BP, Moulédous L, et al. Pain sensing neurons promote tissue regeneration in adult mice. npj. Regen Med. 2021;6:63. https://doi.org/10.1038/s41536-021-00175-7.
Article
CAS
Google Scholar
Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med. 2014;20:857–69. https://doi.org/10.1038/nm.3653.
Article
PubMed
CAS
Google Scholar
Wyles SP, Hayden RE, Meyer FB, Terzic A. Regenerative medicine curriculum for next-generation physicians. npj. Regen Med. 2019;4:3. https://doi.org/10.1038/s41536-019-0065-8.
Article
Google Scholar
Damiano BP, Cheung WM, Santulli RJ, Fung-Leung WP, Ngo K, Ye RD, et al. Cardiovascular responses mediated by protease-activated receptor-2 (PAR-2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 or PAR-1. J Pharmacol Exp Ther. 1999;288:671–8.
PubMed
CAS
Google Scholar
Déry O, Corvera CU, Steinhoff M, Bunnett NW. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol. 1998;274:C1429–52. https://doi.org/10.1152/ajpcell.1998.274.6.C1429.
Article
PubMed
Google Scholar
Kawabata A, Matsunami M, Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol. 2008;153(Suppl 1):S230–40. https://doi.org/10.1038/sj.bjp.0707491.
Article
PubMed
CAS
Google Scholar
Cheng RKY, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature. 2017;545:112–5. https://doi.org/10.1038/nature22309.
Article
PubMed
CAS
Google Scholar
Zhao P, Lieu T, Barlow N, Metcalf M, Veldhuis NA, Jensen DD, et al. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem. 2014;289:27215–34. https://doi.org/10.1074/jbc.M114.599712.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao P, Lieu T, Barlow N, Sostegni S, Haerteis S, Korbmacher C, et al. Neutrophil elastase activates protease-activated receptor-2 (PAR2) and transient receptor potential vanilloid 4 (TRPV4) to cause inflammation and pain. J Biol Chem. 2015;290:13875–87. https://doi.org/10.1074/jbc.M115.642736.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu J, Miao X-R, Tao K-M, Zhu H, Liu Z-Y, Yu D-W, et al. Trypsin-protease activated receptor-2 signaling contributes to pancreatic cancer pain. Oncotarget. 2017;8:61810–23. https://doi.org/10.18632/oncotarget.18696.
Article
PubMed
PubMed Central
Google Scholar
Tu NH, Inoue K, Chen E, Anderson BM, Sawicki CM, Scheff NN, et al. Cathepsin S Evokes PAR2-dependent pain in oral squamous cell carcinoma patients and preclinical mouse models. Cancers (Basel). 2021:13. https://doi.org/10.3390/cancers13184697.
Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol. 2012;34:133–49. https://doi.org/10.1007/s00281-011-0289-1.
Article
PubMed
CAS
Google Scholar
Xue JM, Yang LT, Yang G, Geng XR, Liu ZQ, Wang S, et al. Protease-activated receptor-2 suppresses interleukin (IL)-10 expression in B cells via upregulating Bcl2L12 in patients with allergic rhinitis. Allergy. 2017;72:1704–12. https://doi.org/10.1111/all.13186.
Article
PubMed
CAS
Google Scholar
Palikhe NS, Gandhi VD, Wu Y, Sinnatamby T, Rowe BH, Mayers I, et al. Peripheral blood intermediate monocyte protease-activated receptor-2 expression increases during asthma exacerbations and after inhalation allergen challenge. Ann Allergy Asthma Immunol. 2021;127:249–256.e2. https://doi.org/10.1016/j.anai.2021.04.016.
Article
PubMed
CAS
Google Scholar
Braz JM, Dembo T, Charruyer A, Ghadially R, Fassett MS, Basbaum AI. Genetic priming of sensory neurons in mice that overexpress PAR2 enhances allergen responsiveness. Proc Natl Acad Sci USA. 2021:118. https://doi.org/10.1073/pnas.2021386118.
Borensztajn K, Stiekema J, Nijmeijer S, Reitsma PH, Peppelenbosch MP, Spek CA. Factor Xa stimulates proinflammatory and profibrotic responses in fibroblasts via protease-activated receptor-2 activation. Am J Pathol. 2008;172:309–20. https://doi.org/10.2353/ajpath.2008.070347.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol (Lond). 2007;578(Pt 3):715–33. https://doi.org/10.1113/jphysiol.2006.121111.
Article
PubMed
CAS
Google Scholar
Savchenko A, Barnes S, Kramer RH. Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature. 1997;390:694–8. https://doi.org/10.1038/37803.
Article
PubMed
CAS
Google Scholar
Corvera CU, Déry O, McConalogue K, Gamp P, Thoma M, Al-Ani B, et al. Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors-1 and -2. J Physiol (Lond). 1999;517(Pt 3):741–56. https://doi.org/10.1111/j.1469-7793.1999.0741s.x.
Article
PubMed
CAS
Google Scholar
Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M, et al. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci USA. 1995;92:9151–5. https://doi.org/10.1073/pnas.92.20.9151.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bohm SK, Kong W, Bromme D, Smeekens SP, Anderson DC, Connolly A, et al. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J. 1996;314(Pt 3):1009–16. https://doi.org/10.1042/bj3141009.
Article
PubMed
PubMed Central
Google Scholar
Ubl JJ, Vöhringer C, Reiser G. Co-existence of two types of [Ca2+]i-inducing protease-activated receptors (PAR-1 and PAR-2) in rat astrocytes and C6 glioma cells. Neuroscience. 1998;86:597–609. https://doi.org/10.1016/s0306-4522(97)00686-6.
Article
PubMed
CAS
Google Scholar
Ricks TK, Trejo J. Phosphorylation of protease-activated receptor-2 differentially regulates desensitization and internalization. J Biol Chem. 2009;284:34444–57. https://doi.org/10.1074/jbc.M109.048942.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jung S-R, Seo JB, Deng Y, Asbury CL, Hille B, Koh D-S. Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling. J Gen Physiol. 2016;147:255–71. https://doi.org/10.1085/jgp.201511477.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim BM, Kim DH, Park YJ, Ha S, Choi YJ, Yu HS, et al. PAR2 promotes high-fat diet-induced hepatic steatosis by inhibiting AMPK-mediated autophagy. J Nutr Biochem. 2021;95:108769. https://doi.org/10.1016/j.jnutbio.2021.108769.
Article
PubMed
CAS
Google Scholar
Llorens S, Nava E, Muñoz-López M, Sánchez-Larsen Á, Segura T. Neurological symptoms of COVID-19: the Zonulin hypothesis. Front Immunol. 2021;12:665300. https://doi.org/10.3389/fimmu.2021.665300.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rayees S, Joshi JC, Tauseef M, Anwar M, Baweja S, Rochford I, et al. PAR2-mediated cAMP generation suppresses TRPV4-dependent Ca2+ signaling in alveolar macrophages to resolve TLR4-induced inflammation. Cell Rep. 2019;27:793–805.e4. https://doi.org/10.1016/j.celrep.2019.03.053.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao J, Munanairi A, Liu X-Y, Zhang J, Hu L, Hu M, et al. PAR2 mediates itch via TRPV3 signaling in keratinocytes. J Invest Dermatol. 2020;140:1524–32. https://doi.org/10.1016/j.jid.2020.01.012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Larkin C, Chen W, Szabó IL, Shan C, Dajnoki Z, Szegedi A, et al. Novel insights into the TRPV3-mediated itch in atopic dermatitis. J Allergy Clin Immunol. 2021;147:1110–1114.e5. https://doi.org/10.1016/j.jaci.2020.09.028.
Article
PubMed
CAS
Google Scholar
Schiffers C, Hristova M, Habibovic A, Dustin CM, Danyal K, Reynaert NL, et al. The transient receptor potential channel vanilloid 1 is critical in innate airway epithelial responses to protease allergens. Am J Respir Cell Mol Biol. 2020;63:198–208. https://doi.org/10.1165/rcmb.2019-0170OC.
Article
PubMed
PubMed Central
CAS
Google Scholar
L’Herondelle K, Pierre O, Fouyet S, Leschiera R, Le Gall-Ianotto C, Philippe R, et al. PAR2, keratinocytes, and cathepsin S mediate the sensory effects of ciguatoxins responsible for ciguatera poisoning. J Invest Dermatol. 2021;141:648–658.e3. https://doi.org/10.1016/j.jid.2020.07.020.
Article
PubMed
CAS
Google Scholar
Ocak U, Eser Ocak P, Huang L, Xu W, Zuo Y, Li P, et al. Inhibition of mast cell tryptase attenuates neuroinflammation via PAR-2/p38/NFκB pathway following asphyxial cardiac arrest in rats. J Neuroinflammation. 2020;17:144. https://doi.org/10.1186/s12974-020-01808-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bang E, Kim DH, Chung HY. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-κB and FoxO6 modulation during skin photoaging. Redox Biol. 2021;44:102022. https://doi.org/10.1016/j.redox.2021.102022.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim DH, Lee B, Lee J, Kim ME, Lee JS, Chung JH, et al. FoxO6-mediated IL-1β induces hepatic insulin resistance and age-related inflammation via the TF/PAR2 pathway in aging and diabetic mice. Redox Biol. 2019;24:101184. https://doi.org/10.1016/j.redox.2019.101184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Piran R, Lee S-H, Kuss P, Hao E, Newlin R, Millán JL, et al. PAR2 regulates regeneration, transdifferentiation, and death. Cell Death Dis. 2016;7:e2452. https://doi.org/10.1038/cddis.2016.357.
Article
PubMed
PubMed Central
Google Scholar
Piran R, Lee SH, Li CR, Charbono A, Bradley LM, Levine F. Pharmacological induction of pancreatic islet cell transdifferentiation: relevance to type I diabetes. Cell Death Dis. 2014;5:e1357. https://doi.org/10.1038/cddis.2014.311.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bunnett NW, et al. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol. 2002;169:5315–21. https://doi.org/10.4049/jimmunol.169.9.5315.
Article
PubMed
Google Scholar
Ebeling C, Lam T, Gordon JR, Hollenberg MD, Vliagoftis H. Proteinase-activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway. J Immunol. 2007;179:2910–7. https://doi.org/10.4049/jimmunol.179.5.2910.
Article
PubMed
CAS
Google Scholar
Zhong B, Ma S, Wang DH. Protease-activated receptor 2 protects against myocardial ischemia-reperfusion injury through the lipoxygenase pathway and TRPV1 channels. Exp Ther Med. 2019;18:3636–42. https://doi.org/10.3892/etm.2019.7987.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y-J, Yu S-J, Tsai J-J, Yu C-H, Liao E-C. Antagonism of protease activated receptor-2 by GB88 reduces inflammation triggered by protease allergen Tyr-p3. Front Immunol. 2021;12:557433. https://doi.org/10.3389/fimmu.2021.557433.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh VP, Bhagat L, Navina S, Sharif R, Dawra RK, Saluja AK. Protease-activated receptor-2 protects against pancreatitis by stimulating exocrine secretion. Gut. 2007;56:958–64. https://doi.org/10.1136/gut.2006.094268.
Article
PubMed
CAS
Google Scholar
Laukkarinen JM, Weiss ER, van Acker GJD, Steer ML, Perides G. Protease-activated receptor-2 exerts contrasting model-specific effects on acute experimental pancreatitis. J Biol Chem. 2008;283:20703–12. https://doi.org/10.1074/jbc.M801779200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Radaeva S, Sun R, Pan H-N, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. 2004;39:1332–42. https://doi.org/10.1002/hep.20184.
Article
PubMed
CAS
Google Scholar
Nakamoto N, Ebinuma H, Kanai T, Chu P-S, Ono Y, Mikami Y, et al. CCR9+ macrophages are required for acute liver inflammation in mouse models of hepatitis. Gastroenterology. 2012;142:366–76. https://doi.org/10.1053/j.gastro.2011.10.039.
Article
PubMed
CAS
Google Scholar
Kwon H-J, Won Y-S, Park O, Feng D, Gao B. Opposing effects of prednisolone treatment on T/NKT cell- and hepatotoxin-mediated hepatitis in mice. Hepatology. 2014;59:1094–106. https://doi.org/10.1002/hep.26748.
Article
PubMed
CAS
Google Scholar
Wang H-X, Liu M, Weng S-Y, Li J-J, Xie C, He H-L, et al. Immune mechanisms of Concanavalin A model of autoimmune hepatitis. World J Gastroenterol. 2012;18:119–25. https://doi.org/10.3748/wjg.v18.i2.119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heymann F, Hamesch K, Weiskirchen R, Tacke F. The concanavalin A model of acute hepatitis in mice. Lab Anim. 2015;49(1 Suppl):12–20. https://doi.org/10.1177/0023677215572841.
Article
PubMed
CAS
Google Scholar
Knolle PA, Gerken G, Loser E, Dienes HP, Gantner F, Tiegs G, et al. Role of sinusoidal endothelial cells of the liver in concanavalin A-induced hepatic injury in mice. Hepatology. 1996;24:824–9. https://doi.org/10.1002/hep.510240413.
Article
PubMed
CAS
Google Scholar
Sano A, Taylor ME, Leaning MS, Summerfield JA. Uptake and processing of glycoproteins by isolated rat hepatic endothelial and Kupffer cells. J Hepatol. 1990;10:211–6. https://doi.org/10.1016/0168-8278(90)90054-u.
Article
PubMed
CAS
Google Scholar
Jansen RW, Molema G, Ching TL, Oosting R, Harms G, Moolenaar F, et al. Hepatic endocytosis of various types of mannose-terminated albumins. What is important, sugar recognition, net charge, or the combination of these features. J Biol Chem. 1991;266:3343–8.
Article
PubMed
CAS
Google Scholar
Weber LWD, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33:105–36. https://doi.org/10.1080/713611034.
Article
PubMed
CAS
Google Scholar
Fujii T, Fuchs BC, Yamada S, Lauwers GY, Kulu Y, Goodwin JM, et al. Mouse model of carbon tetrachloride induced liver fibrosis: histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterol. 2010;10:79. https://doi.org/10.1186/1471-230X-10-79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Korsrud GO, Grice HC, McLaughlan JM. Sensitivity of several serum enzymes in detecting carbon tetrachloride-induced liver damage in rats. Toxicol Appl Pharmacol. 1972;22:474–83.
Article
PubMed
CAS
Google Scholar
Michalopoulos GK. Liver regeneration: molecular mechanisms of growth control. FASEB J. 1990;4:176–87. https://doi.org/10.1096/fasebj.4.2.2404819.
Article
PubMed
CAS
Google Scholar
Allen JN, Dey A, Nissly R, Fraser J, Yu S, Balandaram G, et al. Isolation, characterization, and purification of macrophages from tissues affected by obesity-related inflammation. J Vis Exp. 2017. https://doi.org/10.3791/55445.
Scholten D, Trebicka J, Liedtke C, Weiskirchen R. The carbon tetrachloride model in mice. Lab Anim. 2015;49(1 Suppl):4–11. https://doi.org/10.1177/0023677215571192.
Article
PubMed
CAS
Google Scholar
Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, et al. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol. 1998;153:937–44. https://doi.org/10.1016/S0002-9440(10)65635-0.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, et al. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem. 2011;286:24638–48. https://doi.org/10.1074/jbc.M110.201988.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suen JY, Gardiner B, Grimmond S, Fairlie DP. Profiling gene expression induced by protease-activated receptor 2 (PAR2) activation in human kidney cells. PLoS One. 2010;5:e13809. https://doi.org/10.1371/journal.pone.0013809.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee HJ, Yang Y-M, Kim K, Shin DM, Yoon J-H, Cho H-J, et al. Protease-activated receptor 2 mediates mucus secretion in the airway submucosal gland. PLoS One. 2012;7(8):e43188.
Liang G, Barker T, Xie Z, Charles N, Rivera J, Druey KM. Naive T cells sense the cysteine protease allergen papain through protease-activated receptor 2 and propel TH2 immunity. J Allergy Clin Immunol. 2012;129(5):1377–1386.e13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cottrell GS, Amadesi S, Pikios S, Camerer E, Willardsen JA, Murphy BR, et al. Protease-activated receptor 2, dipeptidyl peptidase I, and proteases mediate Clostridium difficile toxin A enteritis. Gastroenterology. 2007;132(7):2422–37.
Article
PubMed
CAS
Google Scholar
Jin G, Hayashi T, Kawagoe J, Takizawa T, Nagata T, Nagano I, et al. Deficiency of PAR-2 gene increases acute focal ischemic brain injury. J Cereb Blood Flow Metab. 2005;25(3):302–13.
Article
PubMed
CAS
Google Scholar
Noorbakhsh F, Tsutsui S, Vergnolle N, Boven LA, Shariat N, Vodjgani M, et al. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Exp Med. 2006;203(2):425–35.
Article
PubMed
PubMed Central
Google Scholar
Sharma A, Tao X, Gopal A, Ligon B, Andrade-Gordon P, Steer ML, et al. Protection against acute pancreatitis by activation of protease-activated receptor-2. Am J Physiol Gastrointest Liver Physiol. 2005;288(2):G388–95.
Article
PubMed
CAS
Google Scholar